MatInt.jl

Integral matrices: Hermite, Smith normal forms and lattice functions
Author jmichel7
Popularity
1 Star
Updated Last
1 Year Ago
Started In
January 2023

# MatIntModule.

This package provides the Smith and Hermite normal forms for integral matrices, the Diaconis-Graham normal form for sets of generators of an abelian group, and a few functions to work with integral matrices as lattices.

Most of the code is ported from GAP4, authored by A. Storjohann, R. Wainwright, F. Gähler and D. Holt; the code for NormalFormIntMat is still hard to read like the original one. The Diaconis-Graham normal form is ported from GAP3/Chevie.

The best way to make sure of the validity of the results is to work with matrices of SaferIntegers, which error in case of overflow. Then redo the computation with a wider type in case of error.

For the API, look at the docstrings for smith, smith_transforms, hermite, hermite_transforms, col_hermite, col_hermite_transforms, diaconis_graham, baseInt, complementInt, lnullspaceInt, solutionmatInt, intersect_rowspaceInt.

We recall that a unimodular matrix means an integer matrix which is invertible and whose inverse is still an integer matrix.

source

# MatInt.hermiteFunction.

hermite(m::AbstractMatrix{<:Integer})

returns the row Hermite normal form H of m, a row equivalent integer upper triangular form. If a pivot is the first non-zero entry on a row of H, the quadrant below left a pivot is zero, pivots are positive and entries above a pivot are nonnegative and smaller than the pivot. There exists a unique unimodular matrix r such that r*m==H.

julia> m=[1 15 28;4 5 6;7 8 9]
3×3 Matrix{Int64}:
 1  15  28
 4   5   6
 7   8   9

julia> hermite(m)
3×3 Matrix{Int64}:
 1  0  1
 0  1  1
 0  0  3

source

# MatInt.hermite_transformsFunction.

hermite_transforms(m::AbstractMatrix{<:Integer})

The row Hermite normal form H of the m is a row equivalent integer upper triangular form. If a pivot is the first non-zero entry on a row of H, the quadrant below left a pivot is zero, pivots are positive and entries above a pivot are nonnegative and smaller than the pivot. There exists a unique unimodular matrix r such that r*m==H. The function hermite_transforms returns a named tuple with components .normal=H and .rowtrans=r.

julia> m=[1 15 28;4 5 6;7 8 9]
3×3 Matrix{Int64}:
 1  15  28
 4   5   6
 7   8   9

julia> n=hermite_transforms(m)
(normal = [1 0 1; 0 1 1; 0 0 3], rowtrans = [-2 62 -35; 1 -30 17; -3 97 -55], rank = 3, signdet = 1)

julia> n.rowtrans*m==n.normal
true

source

# MatInt.col_hermiteFunction.

col_hermite(m::AbstractMatrix{<:Integer})

returns the column Hermite normal form H of the integer matrix m, a column equivalent lower triangular form. If a pivot is the first non-zero entry on a column of H (the quadrant above right a pivot is zero), pivots are positive and entries left of a pivot are nonnegative and smaller than the pivot. There exists a unique unimodular matrix c such that m*c==H.

julia> m=[1 15 28;4 5 6;7 8 9]
3×3 Matrix{Int64}:
 1  15  28
 4   5   6
 7   8   9

julia> col_hermite(m)
3×3 Matrix{Int64}:
 1  0  0
 0  1  0
 0  1  3

source

# MatInt.col_hermite_transformsFunction.

col_hermite_transforms(m::AbstractMatrix{<:Integer})

The column Hermite normal form H of the integer matrix m is a column equivalent lower triangular form. If a pivot is the first non-zero entry on a column of H (the quadrant above right a pivot is zero), pivots are positive and entries left of a pivot are nonnegative and smaller than the pivot. There exists a unique unimodular matrix c such that m*c==H. The function col_hermite_transforms returns a named tuple with components .normal=H and .coltrans=c.

julia> m=[1 15 28;4 5 6;7 8 9]
3×3 Matrix{Int64}:
 1  15  28
 4   5   6
 7   8   9

julia> n=col_hermite_transforms(m)
(normal = [1 0 0; 0 1 0; 0 1 3], coltrans = [-1 13 -50; 2 -27 106; -1 14 -55], rank = 3, signdet = 1)

julia> m*n.coltrans==n.normal
true

source

# MatInt.smithFunction.

smith(m::AbstractMatrix{<:Integer})

computes the Smith normal form S of m, the unique equivalent (in the sense that there exist unimodular integer matrices r, c such that r*m*c==S) diagonal matrix such that Sᵢ,ᵢ divides Sⱼ,ⱼ for i≤j.

julia> m=[1 15 28 7;4 5 6 7;7 8 9 7]
3×4 Matrix{Int64}:
 1  15  28  7
 4   5   6  7
 7   8   9  7

julia> smith(m)
3×4 Matrix{Int64}:
 1  0  0  0
 0  1  0  0
 0  0  3  0

source

# MatInt.smith_transformsFunction.

smith_transforms(m::AbstractMatrix{<:Integer})

The Smith normal form of m is the unique equivalent diagonal matrix S such that Sᵢ,ᵢ divides Sⱼ,ⱼ for i≤j. There exist unimodular integer matrices c, r such that r*m*c==S. The function smith_transforms returns a named tuple with components .normal=S, .rowtrans=r and .coltrans=c.

julia> m=[1 15 28 7;4 5 6 7;7 8 9 7]
3×4 Matrix{Int64}:
 1  15  28  7
 4   5   6  7
 7   8   9  7

julia> n=smith_transforms(m)
(normal = [1 0 0 0; 0 1 0 0; 0 0 3 0], coltrans = [1 0 -1 -84; 0 1 -1 175; 0 0 1 -91; 0 0 0 1], rowtrans = [-2 62 -35; 1 -30 17; -3 97 -55], rank = 3, signdet = nothing)

julia> n.rowtrans*m*n.coltrans==n.normal
true

source

# MatInt.diaconis_grahamFunction.

diaconis_graham(m::Matrix{<:Integer}, moduli::Vector{<:Integer})

returns the normal form defined for the set of generators defined by m of the abelian group defined by moduli. in P. Diaconis and R. Graham., "The graph of generating sets of an abelian group", Colloq. Math., 80:31–38,

moduli should have positive entries such that moduli[i+1] divides moduli[i] for all i, representing the abelian group A=ℤ/moduli[1]×…×ℤ/moduli[n], where n=length(moduli).

m should have n columns, and each line, with the i-th element taken mod moduli[i], represents an element of A; the set of rows of m should generate A.

The function returns 'nothing' if the rows of m do not generate A. Otherwise it returns a named tuple r with fields

r.normal: the Diaconis-Graham normal form, a matrix of same shape as m where either the first n rows are the identity matrix and the remaining rows are 0, or length(m)=n and .normal differs from the identity matrix only in the entry .normal[n,n], which is prime to moduli[n].

r.rowtrans: unimodular matrix such that r.normal==mod.(r.rowtrans*m,moduli')

Here is an example:

julia> r=diaconis_graham([3 0;4 1],[10,5])
(rowtrans = [-13 10; 4 -3], normal = [1 0; 0 2])

julia> r.normal==mod.(r.rowtrans*[3 0;4 1],[10,5]')
true

source

# MatInt.baseIntFunction.

baseInt(m::Matrix{<:Integer})

returns a matrix whose rows forms a basis of the integral row space of m, i.e. of the set of integral linear combinations of the rows of m.

julia> m=[1 2 7;4 5 6;10 11 19]
3×3 Matrix{Int64}:
  1   2   7
  4   5   6
 10  11  19

julia> baseInt(m)
3×3 Matrix{Int64}:
 1  2   7
 0  3   7
 0  0  15

source

# MatInt.complementIntFunction.

complementInt(full::Matrix{<:Integer}, sub::Matrix{<:Integer})

complementInt(sub::Matrix{<:Integer})

Let M be the integral row space of full and let S be the integral row space of sub, which should be a subspace of M. The function complementInt computes a free basis for M that extends S, that is, if the dimension of S is n it determines a basis B={b₁,…,bₘ} for M, as well as n integers x₁,…,xₙ such that the n vectors sᵢ:=xᵢ⋅bᵢ form a basis for S. If only one argument is given, full is assumed to be the identity matrix of size size(sub,2).

The function complementInt returns a named tuple with the following components:

  • complement a matrix whose rows are bₙ₊₁,…,bₘ.
  • sub a matrix whose rows are the sᵢ (a basis for S).
  • moduli the factors xᵢ.
julia> n=[1 2 3;4 5 6]
2×3 Matrix{Int64}:
 1  2  3
 4  5  6

julia> complementInt(n)
(complement = [0 0 1], sub = [1 2 3; 0 3 6], moduli = [1, 3])

source

# MatInt.lnullspaceIntFunction.

`lnullspaceInt(m::Matrix{<:Integer})

returns a matrix whose rows form a basis of the integral lnullspace of m, that is of elements of the left nullspace of m that have integral entries.

julia> m=[1 2 7;4 5 6;7 8 9;10 11 19;5 7 12]
5×3 Matrix{Int64}:
  1   2   7
  4   5   6
  7   8   9
 10  11  19
  5   7  12

julia> MatInt.lnullspaceInt(m)
2×5 Matrix{Int64}:
 1  18   -9  2  -6
 0  24  -13  3  -7

source

# MatInt.intersect_rowspaceIntFunction.

intersect_rowspaceInt(m::Matrix{<:Integer}, n::Matrix{<:Integer})

returns a matrix whose rows forms a basis of the intersection of the integral row spaces of m and n.

julia> mat=[1 2 7;4 5 6;10 11 19]; nat=[5 7 2;4 2 5;7 1 4]
3×3 Matrix{Int64}:
 5  7  2
 4  2  5
 7  1  4

julia> intersect_rowspaceInt(mat,nat)
3×3 Matrix{Int64}:
 1  5  509
 0  6  869
 0  0  960

source

# MatInt.solutionmatIntFunction.

solutionmatInt(mat::Matrix{<:Integer}, v::Vector{<:Integer})

returns an integral vector x that is a solution of the equation mat'*x=v. It returns nothing if no such vector exists.

julia> mat=[1 2 7;4 5 6;7 8 9;10 11 19;5 7 12]
5×3 Matrix{Int64}:
  1   2   7
  4   5   6
  7   8   9
 10  11  19
  5   7  12

julia> solutionmatInt(mat,[95,115,182])
5-element Vector{Int64}:
  2285
 -5854
  4888
 -1299
     0

source

Required Packages

No packages found.

Used By Packages