Package for testing an implementation of the MLJ model interface.
using Pkg
Pkg.add("MLJTestInterface")
To test that a collection of model types, models
, satisfy the MLJ model interface
requirements,
use the MLJTestInterface.test
function:
MLJTestInterface.test(models, data...; mod=Main, level=2, throw=false, verbosity=1)
-> failures, summary
Here data
is training data acceptable to all the specified models
, as would appear in
a call MLJModelInterface.fit(model_instance, verbosity, data...)
.
For detailed documentation, run using MLJTestInterface; @doc MLJTestInterface.test
.
The following tests the model interface implemented by the DecisionTreeClassifier
model
implemented in the package MLJDecisionTreeInterface.jl.
import MLJDecisionTreeInterface
import MLJTestInterface
using Test
X, y = MLJTestInterface.make_multiclass()
failures, summary = MLJTestInterface.test(
[MLJDecisionTreeInterface.DecisionTreeClassifier, ],
X, y,
verbosity=0, # set to 2 when debugging
throw=false, # set to `true` when debugging
mod=@__MODULE__,
)
@test isempty(failures)
The following commands generate small datasets of the form (X, y)
suitable for interface
tests:
-
MLJTestInterface.make_binary(; row_table=false)
-
MLJTestInterface.make_multiclass(; row_table=false)
` -
MLJTestInterface.make_regression(; row_table=false)
` -
MLJTestInterface.make_count(; row_table=false)
`