MLJBase.jl

Core functionality for the MLJ machine learning framework
Popularity
160 Stars
Updated Last
3 Months Ago
Started In
December 2018

MLJBase

Repository for developers that provides core functionality for the MLJ machine learning framework.

Branch Julia Build Coverage
master v1 Continuous Integration (CPU) Code Coverage
dev v1 Continuous Integration (CPU) Code Coverage

Stable

MLJ is a Julia framework for combining and tuning machine learning models. This repository provides core functionality for MLJ, including:

  • completing the functionality for methods defined "minimally" in MLJ's light-weight model interface MLJModelInterface (/src/interface)

  • definition of machines and their associated methods, such as fit! and predict/transform (src/machines).

  • MLJ's model composition interface, including learning networks, pipelines, stacks, target transforms (/src/composition)

  • basic utilities for manipulating datasets and for synthesizing datasets (src/data)

  • a small interface for resampling strategies and implementations, including CV(), StratifiedCV and Holdout (src/resampling.jl). Actual performance evaluation measures (aka metrics), which previously were provided by MLJBase.jl, now live in StatisticalMeasures.jl.

  • methods for performance evaluation, based on those resampling strategies (src/resampling.jl)

  • one-dimensional hyperparameter range types, constructors and associated methods, for use with MLJTuning (src/hyperparam)