Implementations of Infinitesimal Continuous Normalizing Flows Algorithms in Julia
See CITATION.bib
for the relevant reference(s).
using Pkg
Pkg.add("ContinuousNormalizingFlows")
# Enable Logging
using Logging, TerminalLoggers
global_logger(TerminalLogger())
# Parameters
nvars = 1
naugs = nvars
# n_in = nvars # without augmentation
n_in = nvars + naugs # with augmentation
n = 1024
# Model
using ContinuousNormalizingFlows, Lux, ADTypes, Enzyme #, CUDA, ComputationalResources
nn = Chain(Dense(n_in => 3 * n_in, tanh), Dense(3 * n_in => n_in, tanh))
# icnf = construct(RNODE, nn, nvars) # use defaults
icnf = construct(
RNODE,
nn,
nvars, # number of variables
naugs; # number of augmented dimensions
compute_mode = DIJacVecMatrixMode(AutoEnzyme(; function_annotation = Enzyme.Const)), # process data in batches
tspan = (0.0f0, 13.0f0), # have bigger time span
steer_rate = 1.0f-1, # add random noise to end of the time span
# resource = CUDALibs(), # process data by GPU
# inplace = true, # use the inplace version of functions
)
# Data
using Distributions
data_dist = Beta{Float32}(2.0f0, 4.0f0)
r = rand(data_dist, nvars, n)
r = convert.(Float32, r)
# Fit It
using DataFrames, MLJBase #, ForwardDiff, ADTypes, OptimizationOptimisers
df = DataFrame(transpose(r), :auto)
# model = ICNFModel(icnf) # use defaults
model = ICNFModel(
icnf;
batch_size = 256, # have bigger batchs
# n_epochs = 100, # have less epochs
# optimizers = (Adam(),), # use a different optimizer
# adtype = AutoForwardDiff(), # use ForwardDiff
)
mach = machine(model, df)
fit!(mach)
ps, st = fitted_params(mach)
# Store It
using JLD2, UnPack
jldsave("fitted.jld2"; ps, st) # save
@unpack ps, st = load("fitted.jld2") # load
# Use It
d = ICNFDist(icnf, TestMode(), ps, st) # direct way
# d = ICNFDist(mach, TestMode()) # alternative way
actual_pdf = pdf.(data_dist, vec(r))
estimated_pdf = pdf(d, r)
new_data = rand(d, n)
# Evaluate It
using Distances
mad_ = meanad(estimated_pdf, actual_pdf)
msd_ = msd(estimated_pdf, actual_pdf)
tv_dis = totalvariation(estimated_pdf, actual_pdf) / n
res_df = DataFrame(; mad_, msd_, tv_dis)
display(res_df)
# Plot It
using CairoMakie
f = Figure()
ax = Makie.Axis(f[1, 1]; title = "Result")
lines!(ax, 0.0f0 .. 1.0f0, x -> pdf(data_dist, x); label = "actual")
lines!(ax, 0.0f0 .. 1.0f0, x -> pdf(d, vcat(x)); label = "estimated")
axislegend(ax)
save("result-fig.svg", f)
save("result-fig.png", f)