MultiDimEquations
Allows to write multi-dimensional equations in Julia using a readable and compact syntax:
@meq nTrees[r in reg, sp in species, dc in diameterClass[2-end], y in years] = nTrees[r, sp, dc, y-1]*(1-mortRate[r, sp, dc, y-1] - promotionRate[r, sp, dc, y-1]) + nTrees[r, sp, dc-1, y-1] * promotionRate[r, sp, dc-1, y-1]
It is a bit like using an Algebraic modeling language (AML) like GAMS or Julia/JuMP, but outside the domain of optimisation.
Installation
] add "MultiDimEquations"
Using the package
using MultiDimEquations
Definition of the variables:
Define or define and load the data for each group of variables from a DataFrame in long format, i.e. in the format dim1|dim2|...|value or dim1|dim2|...|variableName|value
df = CSV.read(IOBuffer("""
reg prod var value
us banana production 10
us banana transfCoef 0.6
us banana trValues 2
us apples production 7
us apples transfCoef 0.7
us apples trValues 5
us juice production missing
us juice transfCoef missing
us juice trValues missing
eu banana production 5
eu banana transfCoef 0.7
eu banana trValues 1
eu apples production 8
eu apples transfCoef 0.8
eu apples trValues 4
eu juice production missing
eu juice transfCoef missing
eu juice trValues missing
"""), DataFrame, delim=" ", ignorerepeated=true, copycols=true, missingstring="missing")
(production,transfCoef,trValues) = defLoadVars(["production","transfCoef","trValues"], df,["reg","prod"], varNameCol="var", valueCol="value",sparse=true)
consumption = defVars(["reg","prod"],[String,String])
For more info type ?defVars
or ?defLoadVars
once you installed and loaded the package or consult the documentation (stable|development)
Defining the "set" (dimensions) of your data
These are simple Julia Arrays..
reg = unique(df.reg)
products = unique(df.prod)
primPr = products[1:2]
secPr = [products[3]]
Write your model using the @meq macro
The @meq macro adds a bit of convenience transforming at parse time (so, without adding run-time overheads) your equation from par1[d1 in DIM1, d2 in DIM2, dfix3] = par2[d1,d2]+par3[d1,d2]
to [par1[d1,d2,dfix3] = par2[d1,d2]+par3[d1,d2] for d1 in dim1, d2 in dim2]
.
# equivalent to [production[r, sp] = sum(trValues[r,pp] * transfCoef[r,pp] for pp in primPr) for r in reg, sp in secPr]
@meq production[r in reg, sp in secPr] = sum(trValues[r,pp] * transfCoef[r,pp] for pp in primPr)
@meq consumption[r in reg, pp in primPr] = production[r,pp] - trValues[r,pp]
@meq consumption[r in reg, sp in secPr] = production[r, sp]
For more info on the @meq macro type ?@meq
or consult the documentation (stable|development)
Known limitation
- At this time, only
var = ...
assignments are supported.
Acknowledgements
The development of this package was supported by the French National Research Agency through the Laboratory of Excellence ARBRE, a part of the “Investissements d'Avenir” Program (ANR 11 – LABX-0002-01).