PanelDataTools.jl

Convenient functions for working with panel (longitudinal) data in Julia
Author eirikbrandsaas
Popularity
14 Stars
Updated Last
5 Months Ago
Started In
July 2022

PanelDataTools

Build Status Coverage

Introduction

This package aims to introduce some convenience tools for working with Panel Data in the DataFrames.jl world in Julia. The package currently supports lags, leads, diffs, seasonal diffs, and spell analysis.

The package is inspired by Stata's great panel data features such as tsspell and lag/lead/difference operators L., F.,S., and D.. It relies on DataFrames.jl and PanelShift.jl. The goal is to provide results that are correct and easy to obtain.

Workflow:

  1. First set the :id and :t variables using paneldf!(df::DataFrame, id::Symbol, t::Symbol)
  2. To find the lagged :x column use lag!(df,:x).
    • If you don't want to store metadata you can pass the id and t column names directly: lag!(df,:id,:t,:a))
  3. See below for examples of lags, leads, and diffs (where you can specify multiple colomns or time gaps), how to find spells (e.g., unemployment spells), how to fill time gaps, and giving names to new columns

Examples working with Dates/Time:

The default time gap ("Delta") is 1 oneunit as determined by oneunit(). For Int, Date, and DateTime this defaults to 1, 1 day, and 1 millisecond, respectively. If these are not the gaps you want, you must specify the correct gaps.

For example, here we have daily data with many gaps:

using PanelDataTools,DataFrames,Dates
df = DataFrame(id=fill(1,4),
    t=[Date(2000,1,1),Date(2000,1,2),Date(2000,2,1),Date(2001,1,1)],
    a=[0,1,1,1])
paneldf!(df,:id,:t)

panel variable: id
 time variable: t
         delta: 1 day

Next, we create lags of a with various gaps

lag!(df,:a,Day(1),name="L(Day=1)")
lag!(df,:a,Month(1),name="L(Month=1)")
lag!(df,:a,Day(366),name="L(Day=366)") # 366 days = one year (2000 was a leap year)
lag!(df,:a,Month(12),name="L(Month=12)") # 12 months = one year
lag!(df,:a,Year(1),name="L(Year=1)")
lag!(df,:a) # Default (picks time gap of 1 day and names the column "L1a")
display(df)

which gives:

4×9 DataFrame
 Row │ id     t           a      L(Day=1)  L(Month=1)  L(Day=366)  L(Month=12)  L(Year=1)  L1a     
     │ Int64  Date        Int64  Int64?    Int64?      Int64?      Int64?       Int64?     Int64?  
─────┼─────────────────────────────────────────────────────────────────────────────────────────────
   11  2000-01-01      0   missing     missing     missing      missing    missing  missing 
   21  2000-01-02      1         0     missing     missing      missing    missing        0
   31  2000-02-01      1   missing           0     missing      missing    missing  missing 
   41  2001-01-01      1   missing     missing           0            0          0  missing 

Shifts: Leads and Lags

Easily create leads, lags, diffs, and seasonal diffs from panels:

using PanelDataTools, DataFrames
df = DataFrame(id = [1,1,1,2,2,2], t = [1,2,3,1,2,3], a = [0,0,1,1,1,0])
paneldf!(df,:id,:t)

lag!(df,:a)
lead!(df,:a)
lead!(df,:a,2) # last argument is how many lags
display(df)
6×6 DataFrame
 Row │ id     t      a      L1a      F1a      F2a
     │ Int64  Int64  Int64  Int64?   Int64?   Int64?
─────┼────────────────────────────────────────────────
   11      1      0  missing        0        1
   21      2      0        0        1  missing
   31      3      1        0  missing  missing
   42      1      1  missing        1        0
   52      2      1        1        0  missing
   62      3      0        1  missing  missing

or as a one-liner specifying multiple lead lags OR multiplate variables at a specific shift:

lag!(df,:id,:t,:a,[-2,-1,1]) # -2 and -1 becomes leads of a
lead!(df,:id,:t,:a,[-1,1,2]) # -1 becomes a lag
lag!(df,:id,:t,[:a,:b,:c],2) # Find lags of a,b, and c

Differences

There is also support for "seasonal" and difference operators mimicking Stata's S.x and D.x syntax:

df = DataFrame(id = [1,1,1,2,2,2], t = [1,2,3,1,2,3], a = [1,1,1,1,0,0])
paneldf!(df,:id,:t)
diff!(df,:a,1)
diff!(df,:a,2)
seasdiff!(df,:a,1)
seasdiff!(df,:a,2)
display(df)
 Row │ id     t      a      D1a      D2a      S1a      S2a
     │ Int64  Int64  Int64  Int64?   Int64?   Int64?   Int64?
─────┼─────────────────────────────────────────────────────────
   11      1      1  missing  missing  missing  missing
   21      2      1        0  missing        0  missing
   31      3      1        0        0        0        0
   42      1      1  missing  missing  missing  missing
   52      2      0       -1  missing       -1  missing
   62      3      0        0        1        0       -1

Provide Names

You can also create new variable names by adding the name="FancyName" keyword argument:

lag!(df,:a,name="FancyName")

Note that this only works operating over a single column.

Spells

or to obtain spells as in tsspell in Stata:

df = DataFrame(id = [1,1,1,2,2,2], t = [1,2,3,1,2,3], a = [0,0,1,1,1,0])
paneldf!(df,:id,:t)
spell!(df,:a)
display(df)
6×6 DataFrame
 Row │ id     t      a      _spell  _seq
     │ Int64  Int64  Int64  Int64   Int64
─────┼────────────────────────────────────
   11      1      0       1      1
   21      2      0       1      2
   31      3      1       2      1
   42      1      1       1      1
   52      2      1       1      2
   62      3      0       2      1

Filling in gaps (tsfill)

tsfill is used to fill in gaps of the time variable. You do not need to use it to construct the correct leads, lags or differences.

df = DataFrame(id = [1,1,2,2,2], t = [1,3,1,2,3], a = [1,1,1,0,0]) # Note, missing t=2 for id=1
paneldf!(df,:id,:t)
dfn = tsfill(df) # Since tsfill extends columns in the DataFrame is does not operate inplace
6×3 DataFrame
 Row │ id     t      a
     │ Int64  Int64  Int64?
─────┼───────────────────────
   11      1        1
   21      2  missing
   31      3        1
   42      1        1
   52      2        0
   62      3        0

or maybe you want to fill in with time gaps of 0.5:

dfn_half = tsfill(df,0.5)
 Row │ id     t        a       
     │ Int64  Float64  Int64?  
─────┼─────────────────────────
   11      1.0        1
   21      1.5  missing 
   31      2.0  missing 
                        
   92      2.5  missing 
  102      3.0        0

Relevant links and packages

Possible future features

  • Link with GLM or FixedEffectModels so that you can specify a model with lags (Model(y ~ x + F.a))

Used By Packages

No packages found.