PanelShift.jl

Time-aware lags and leads in panel data.
Author FuZhiyu
Popularity
17 Stars
Updated Last
3 Months Ago
Started In
March 2022

PanelShift.jl

Build Status Coverage

This package provides convenient functions to lead&lag vectors with respect to a time vector. The time vector needs to be strictly increasing, but gaps are allowed. This is a common operation when dealing with panel data, where entities may have different missing periods.

The key function in this package is tlag (tlead):

julia> t, v = [1;2;4], [1;2;3];
julia> tlag(t, v) # the default lag period is the unitary difference in t, here 1
3-element Vector{Union{Missing, Int64}}:
  missing
 1
  missing


julia> tlag(t, v, 2) # we can also specify lags using the third argument
3-element Vector{Union{Missing, Int64}}:
  missing
  missing
 2


julia> using Dates;
julia> t = [Date(2020,1,1); Date(2020,1,2); Date(2020,1,4)];
julia> tlag(t, [1, 2, 3]) # customized types of the time vector are also supported 
3-element Vector{Union{Missing, Int64}}:
  missing
 1
  missing


julia> tlag(t, [1, 2, 3], Day(2)) # specify two-day lags
3-element Vector{Union{Missing, Int64}}:
  missing
  missing
 2

Function tlead shifts the array in the opposite direction, and function tshift calls tlag when the period n is positive and vice versa.

For convenience (and to honor the name of the package), I also define functions panellag, panellead and panelshift to shift vectors in panel data. These functions are wrappers of groupby, transform! and tshift, e.g.,

function panellag!(df, id, t, x, newx, n=oneunit(df[1, t] - df[1, t]); checksorted=true)
    return transform!(groupby(df, id), [t, x] => ((t, x) -> tlag(t, x, n; checksorted=checksorted)) => newx)
end

It groups df by id, applies tlag to x with respect to t, and stores the lagged column in df under the name newx.

As an example:

julia> using DataFrames;
julia> df = DataFrame(
    t = [1;2;3;4; 1;3;4; 1;4; 1], 
    id = [1;1;1;1; 2;2;2; 3;3; 4],
    x = [1;2;3;4; 5;6;7; 8;9; 10]
);
julia> panellead!(df, :id, :t, :x, :Fx)

10×4 DataFrame
 Row │ t      id     x      Fx      
     │ Int64  Int64  Int64  Int64?  
─────┼──────────────────────────────
   11      1      1  missing 
   22      1      2        1
   33      1      3        2
                     
   81      3      8  missing 
   94      3      9  missing 
  101      4     10  missing 
                      4 rows omitted

Used By Packages