PuiseuxPolynomials.jl

Multivariate (Puiseux) polynomials and rational fractions
Author jmichel7
Popularity
3 Stars
Updated Last
7 Months Ago
Started In
October 2021

Puiseux polynomials

# PuiseuxPolynomialsModule.

This package implements Puiseux polynomials, that is linear combinations of monomials of the type x₁^{a₁}… xₙ^{aₙ} where xᵢ are variables and aᵢ are exponents which can be arbitrary rational numbers. When the aᵢ are integers we refer to "multivariate Laurent polynomials", and when tha aᵢ are positive integers we refer then to "multivariate polynomials" (or true polynomials).

This package also implements multivariate rational fractions, constructed as the quotient of two Laurent polynomials (which is normalized to become the quotient of two true polynomials). This package is in particular a perfectly usable (and quite good I hope) implementation of multivariate polynomials and multivariate rational fractions if you are only interested in that.

The main use of Puiseux polynomials is they are the ring of integers of the algebraic closure of the the multivariate rational fractions. In particular cyclotomic Hecke algebras take their character values and representations in them.

This package depends only on the packages Reexport, LaurentPolynomials and ModuleEltss; the names defined by LaurentPolynomials are reexported by this package.

Our Puiseux polynomials have the parametric type Mvp{C,E} where C is the type of the coefficients and E is the type of the exponents: E=Int for Laurent polynomials; E=Rational{Int} for more general Puiseux polynomials. When printing the type of an Mvp, only C is printed if E==Int. Rational fractions are only defined for numerator and denominator true polynomials and have type Frac{Mvp{C,Int}} –- the quotient of two Laurent polynomials is normalized to a quotient of two true polynomials.

We first look at how to make Puiseux polynomials.

@Mvp x₁,…,xₙ

assigns to each Julia name xᵢ an Mvp representing an indeterminate suitable to build multivariate polynomials or rational fractions. Mvp(:x₁) creates the same Mvp without assigning it to variable x₁.

julia> @Mvp x,y # creates the variables x,y

julia> (x+y^-1)^3
Mvp{Int64}: x³+3x²y⁻¹+3xy⁻²+y⁻³

julia> x+Mvp(:z)
Mvp{Int64}: x+z

julia> x^(1//2)  # a Puiseux monomial
Mvp{Int64,Rational{Int64}}: x½

julia> Mvp(3)  # convert a number to an Mvp with only a constant term
Mvp{Int64}: 3

It is convenient to create Mvps using variables such as x,y above. The functions repr or print show an Mvp in a form which can be read back in Julia – this is also the way an Mvp is printed in another context than the repl, IJulia or pluto:

julia> repr(3x*y^-2+4)
"Mvp{Int64, Int64}([:x=>1,:y=>-2]=>3,[]=>4)"

It is better not to use this form casually, since the arguments must be normalized (sorted by key, and no duplicate key).

Only monomials and one-term Mvps can be raised to a non-integral power; the Mvp with one term constant c times the monomial m can be raised to a fractional power of denominator d if and only if root(c,d) is defined (this is equivalent to c^{1//d} for floats);

julia> (4x)^(1//2)
Mvp{Int64,Rational{Int64}}: 2x½

julia> (2.0x)^(1//2)
Mvp{Float64,Rational{Int64}}: 1.4142135623730951x½

julia> root(2.0x)
Mvp{Float64,Rational{Int64}}: 1.4142135623730951x½

One may want to define root differently; for instance, in my other package CylotomicNumbers I define square roots of rationals as cyclotomics, and I also have implemented arbitrary roots of roots of unity.

julia> using CyclotomicNumbers

julia> (2x)^(1//2)
Mvp{Cyc{Int64},Rational{Int64}}: √2x½

julia> (E(3)*x)^(2//3)
Mvp{Cyc{Int64},Rational{Int64}}: ζ₉²x⅔

There are various ways to take an Mvp apart. Below are the most direct; look also at the functions coefficient, coefficients, pairs, monomials, variables and powers.

julia> p=3x*y^-2+4
Mvp{Int64}: 3xy⁻²+4

julia> term(p,1) # a term is a Pair monomial=>coefficient
xy⁻² => 3

julia> term(p,2) # the trivial monomial Monomial() prints as an empty string
 => 4

julia> length(p) # the number of terms
2

julia> term.(p,1:length(p)) # same as pairs(p)
2-element Vector{Pair{Monomial{Int64}, Int64}}:
 xy⁻² => 3
      => 4

julia> last(term(p,1)) # same as first(coefficients(p))
3

julia> m=first(term(p,1)) # same as first(monomials(p))
Monomial{Int64}:xy⁻²

julia> length(m) # how many variables in m
2

julia> map((x,y)->x=>y,variables(m),powers(m)) # same as pairs(m)
2-element Vector{Pair{Symbol, Int64}}:
 :x => 1
 :y => -2

julia> degree(m,:x) # power of x in m
1

julia> degree(m,:y) # power of y in m
-2

The valuation and degree of an Mvp can be inspected globally or variable by variable.

julia> p
Mvp{Int64}: 3xy⁻²+4

julia> variables(p)
2-element Vector{Symbol}:
 :x
 :y

julia> degree(p),degree(p,:x),degree(p,:y)
(0, 1, 0)

julia> valuation(p),valuation(p,:x),valuation(p,:y)
(-1, 0, -2)

Terms are totally ordered in an Mvp by a monomial ordering (that is, an ordering on monomials so that x<y implies xz<yz for any monomials x,y,z). The terms are in decreasing order, so that the first term is the highest. By default, the ordering is lex. The orderings grlex and grevlex are also implemented (see their docstring and grobner_basis for how to use them).

An Mvp is a scalar if the valuation and degree are 0. The function scalar returns the constant coefficient if the Mvp is a scalar, and nothing otherwise.

Usual arithmetic (+, -, *, ^, /, //, one, isone, zero, iszero, ==) works. Elements of type <:Number are considered as scalars for scalar operations on the coefficients.

julia> p
Mvp{Int64}: 3xy⁻²+4

julia> p^2
Mvp{Int64}: 9x²y⁻⁴+24xy⁻²+16

julia> p/2
Mvp{Float64}: 1.5xy⁻²+2.0

julia> p//2
Mvp{Rational{Int64}}: (3//2)xy⁻²+2//1

When converting an Mvp to another type of Mvp one needs to specify the two type parameters (the type of the coefficients and the type of the exponents).

julia> Mvp{Float64,Rational{Int}}(p)
Mvp{Float64,Rational{Int64}}: 3.0xy⁻²+4.0

One can evaluate an Mvp, setting the value of some variables, by using the function call syntax.

julia> p=x+y
Mvp{Int64}: x+y

julia> p(x=2)    # evaluate p at x=2
Mvp{Int64}: y+2

julia> value(p,:x=>2) # there is also a more explicit `value` function.
Mvp{Int64}: y+2

julia> p(x=2,y=x) # simultaneous evaluation
Mvp{Int64}: x+2

julia> value(p,:x=>2,:y=>x)
Mvp{Int64}: x+2

Note that an Mvp always evaluates to an Mvp, for consistency. You should use scalar on the result of giving values to all variables in a Mvp to get a number.

julia> p(x=1,y=2)
Mvp{Int64}: 3

julia> scalar(p(x=1,y=2))
3

julia> v=(x^(1//2))(x=2.0)
Mvp{Float64,Rational{Int64}}: 1.4142135623730951

julia> scalar(v)
1.4142135623730951

One can divide an Mvp by another when the division is exact, compute the gcd and lcm of two Mvp.

julia> LinearAlgebra.exactdiv(x^2-y^2,x-y) # errors if the division is not exact
Mvp{Int64}: x+y

julia> (x+y)/(2x^2)   # divide by a monomial
Mvp{Float64}: 0.5x⁻¹+0.5x⁻²y

julia> (x+y)//(2x^2)
Mvp{Rational{Int64}}: (1//2)x⁻¹+(1//2)x⁻²y

julia> (x+y)/(x-y)   # if the division is not exact one gets a rational fraction
Frac{Mvp{Int64, Int64}}: (x+y)/(x-y)

Raising a non-monomial Laurent polynomial to a negative power returns a rational fraction. Rational fractions are normalized such that the numerator and denominators are true polynomials prime to each other. They have the arithmetic operations +, - , *, /, //, ^, inv, one, isone, zero, iszero (these operations can operate between an Mvp or a Number and a Frac{<:Mvp}).

julia> (x+1)^-2
Frac{Mvp{Int64, Int64}}: 1/(x²+2x+1)

julia> x+1/(y+1)
Frac{Mvp{Int64, Int64}}: (xy+x+1)/(y+1)

julia> 1/(y-1)-1/(y+1)
Frac{Mvp{Int64, Int64}}: 2/(y²-1)

One can evaluate a Frac, setting the value of some variables, by using the function call syntax or the value function:

julia> ((x+y)/(x-y))(x=y+1)
Mvp{Float64}: 2.0y+1.0

julia> value((x+y)/(x-y),:x=>y+1;Rational=true) # Rational=true says use //
Mvp{Int64}: 2y+1

A Frac can be dissected using numerator and denominator. Fracs and Mvps are scalars for broadcasting and can be sorted (have cmp and isless methods).

julia> m=[x+y x-y;x+1 y+1]
2×2 Matrix{Mvp{Int64, Int64}}:
 x+y  x-y
 x+1  y+1

julia> n=inv(Frac.(m))
2×2 Matrix{Frac{Mvp{Int64, Int64}}}:
 (-y-1)/(x²-2xy-y²-2y)  (x-y)/(x²-2xy-y²-2y)
 (x+1)/(x²-2xy-y²-2y)   (-x-y)/(x²-2xy-y²-2y)

julia> lcm(denominator.(n))
Mvp{Int64}: x²-2xy-y²-2y

Finally, Mvps have methods conj, adjoint which operate on coefficients, a derivative method, and methods positive_part, negative_part and bar (useful for Kazhdan-Lusztig theory).

julia> @Mvp z
Mvp{Int64}: z

julia> hessian(p,vars)=[derivative(derivative(p,x),y) for x in vars, y in vars]
hessian (generic function with 1 method)

julia> hessian(x^2*y^2*z^2,[:x,:y,:z])
3×3 Matrix{Mvp{Int64, Int64}}:
 2y²z²  4xyz²  4xy²z
 4xyz²  2x²z²  4x²yz
 4xy²z  4x²yz  2x²y²

julia> jacobian(pols,vars)=[derivative(p,v) for p in pols, v in vars]
jacobian (generic function with 1 method)

julia> jacobian([x,y,z],[:x,:y,:z])
3×3 Matrix{Mvp{Int64, Int64}}:
 1  0  0
 0  1  0
 0  0  1

julia> p=(x+y^-1)^4
Mvp{Int64}: x⁴+4x³y⁻¹+6x²y⁻²+4xy⁻³+y⁻⁴

julia> positive_part(p)
Mvp{Int64}: x⁴

julia> negative_part(p)
Mvp{Int64}: y⁻⁴

julia> bar(p)
Mvp{Int64}: y⁴+4x⁻¹y³+6x⁻²y²+4x⁻³y+x⁻⁴

Despite the degree of generality of our polynomials, the speed is not too shabby. For the Fateman test f(f+1) where f=(1+x+y+z+t)^15, we take 3sec. According to the Nemo paper, Sagemath takes 10sec and Nemo takes 1.6sec.

source

# PuiseuxPolynomials.MvpType.

Mvps are implemented as a list of pairs monomial=>coefficient sorted by the monomial order lex.

source

# PuiseuxPolynomials.@MvpMacro.

@Mvp x,y

is equivalent to x=Mvp(:x);y=Mvp(:y) excepted it creates x,y in the global scope of the current module, since it uses eval.

source

# PuiseuxPolynomials.MvpMethod.

Mvp(x::Symbol) creates the Mvp with one term of degree one and coefficient 1 with variable x

source

# LaurentPolynomials.valuationFunction.

valuation(m::Mvp[,v::Symbol])

The valuation of an Mvp is the minimal degree of a monomial.

With second argument a variable name, valuation returns the valuation of the polynomial in that variable.

julia> @Mvp x,y; a=x^2+x*y
Mvp{Int64}: x²+xy

julia> valuation(a), valuation(a,:y), valuation(a,:x)
(2, 0, 1)

source

# LaurentPolynomials.degreeFunction.

degree(m::Mvp[,v::Symbol])

The degree of a monomial is the sum of the exponents of the variables. The degree of an Mvp is the largest degree of a monomial.

With second argument a variable name, degree returns the degree of the polynomial in that variable.

julia> a=x^2+x*y
Mvp{Int64}: x²+xy

julia> degree(a), degree(a,:y), degree(a,:x)
(2, 1, 2)

source

# PuiseuxPolynomials.variablesFunction.

variables(a::Monomial) iterator on the variables of a (a sorted list of Symbols)

source

variables(p::Mvp)

variables(v::AbstractArray)

returns the list of variables of p (resp. of all p in v) as a sorted list of Symbols.

julia> @Mvp x,y,z

julia> variables([z,[y+z],x])
3-element Vector{Symbol}:
 :x
 :y
 :z

source

# LaurentPolynomials.coefficientsMethod.

coefficients(p::Mvp, var::Symbol)

returns a Dict with keys the degree in var and values the corresponding coefficient of p with respect to var.

julia> p=(x+y+inv(y))^4
Mvp{Int64}: x⁴+4x³y+4x³y⁻¹+6x²y²+12x²+6x²y⁻²+4xy³+12xy+12xy⁻¹+4xy⁻³+y⁴+4y²+6+4y⁻²+y⁻⁴

julia> coefficients(p,:x)
Dict{Int64, Mvp{Int64, Int64}} with 5 entries:
  0 => y⁴+4y²+6+4y⁻²+y⁻⁴
  4 => 1
  2 => 6y²+12+6y⁻²
  3 => 4y+4y⁻¹
  1 => 4y³+12y+12y⁻¹+4y⁻³

julia> coefficients(p,:y)
Dict{Int64, Mvp{Int64, Int64}} with 9 entries:
  0  => x⁴+12x²+6
  4  => 1
  -1 => 4x³+12x
  2  => 6x²+4
  -3 => 4x
  -2 => 6x²+4
  -4 => 1
  3  => 4x
  1  => 4x³+12x

The same caveat is applicable to coefficients as to evaluating: the values are always Mvps. To get a list of scalars for the coefficients of a univariate polynomial represented as a Mvp, one should use scalar on the values of coefficients.

source

# LaurentPolynomials.coefficientsMethod.

coefficients(p::Mvp)

is an efficient iterator over the coefficients of the monomials in p.

source

# PuiseuxPolynomials.coefficientFunction.

coefficient(p::Mvp,m::Monomial)

The coefficient of the polynomial p on the monomial m.

julia> @Mvp x,y; p=(x-y)^3
Mvp{Int64}: x³-3x²y+3xy²-y³

julia> coefficient(p,Monomial_(:x=>2,:y=>1)) # coefficient on x²y
-3

julia> coefficient(p,Monomial()) # constant coefficient
0

source

coefficient(p::Mvp, var::Symbol, d)

returns the coefficient of degree d in the variable var in the Mvp p.

julia> @Mvp x,y; p=(x+y^(1//2)+1)^3
Mvp{Int64,Rational{Int64}}: x³+3x²y½+3x²+3xy+6xy½+3x+y³⁄₂+3y+3y½+1

julia> coefficient(p,:y,1//2)
Mvp{Int64,Rational{Int64}}: 3x²+6x+3

julia> coefficient(p,:x,1)
Mvp{Int64,Rational{Int64}}: 3y+6y½+3

source

# PuiseuxPolynomials.MonomialType.

Monomials are implemented as a list of pairs :variable=>degree sorted in the alphabetic order of variables. The degree can be Int or Rational{Int}.

source

# PuiseuxPolynomials.monomialsFunction.

monomials(p::Mvp)

is an efficient iterator over the monomials of p.

source

# PuiseuxPolynomials.powersFunction.

powers(a::Monomial) iterator on the powers of variables in a

source

# Base.pairsMethod.

pairs(a::Monomial)

returns the pairs :variable=>power in a.

source

# Base.islessMethod.

isless(a::Monomial,b::Monomial)

For our implementation of Mvps to work, isless must define a monomial order (that is, for monomials m,a,b we have a<b => a*m<b*m). By default we use the "lex" ordering.

source

# PuiseuxPolynomials.lexFunction.

lex(a::Monomial, b::Monomial) The "lex" ordering, where a<b if the first variable in a/b occurs to a positive power.

source

# PuiseuxPolynomials.grlexFunction.

grlex(a::Monomial, b::Monomial) The "grlex" ordering, where a<b̀ if degree(a)>degree(b) or the degrees are equal but lex(a,b).

source

# PuiseuxPolynomials.grevlexFunction.

grevlex(a::Monomial, b::Monomial) The "grevlex" ordering, where a<b̀ if degree(a)>degree(b) or the degrees are equal but the last variable in a/b occurs to a negative power.

source

# Base.pairsMethod.

pairs(p::Mvp)

returns the pairs monomial=>coefficient in p.

source

# LaurentPolynomials.PolMethod.

Pol(p::Mvp{T}) where T

converts the one-variable Mvp{T} p to a Pol{T}. It is an error if p has more than one variable, or this variable appears to non-integral powers.

julia> @Mvp x; @Pol q; Pol(x^2+x)
Pol{Int64}: q²+q

source

# LaurentPolynomials.PolMethod.

Pol(p::Mvp,v::Symbol)

returns a polynomial whose coefficients are the coefficients of the Mvp p with respect to the variable v (as Mvps). The variable v should appear only with integral powers in p.

julia> p=(x+y^(1//2))^3
Mvp{Int64,Rational{Int64}}: x³+3x²y½+3xy+y³⁄₂

julia> Pol(:q); Pol(p,:x)
Pol{Mvp{Int64, Rational{Int64}}}: q³+3y½q²+3yq+y³⁄₂

This can be used for instance to compute the discriminant of a polynomial with respect to one of its variables:

julia> p=x+y^2+x^3+y^3
Mvp{Int64}: x³+x+y³+y²

julia> discriminant(Pol(p,:x))
Mvp{Int64}: 27y⁶+54y⁵+27y⁴+4

source

# PuiseuxPolynomials.MvpMethod.

Mvp(p::Pol[,v]) converts p to an Mvp, with the same variable name if v omitted or the variable name v.

julia> @Pol q
Pol{Int64}: q

julia> Mvp(q^2+q)
Mvp{Int64}: q²+q

julia> Mvp(q^2+q,:x)
Mvp{Int64}: x²+x

source

# PuiseuxPolynomials.valueFunction.

`value(p::Mvp,:x₁=>v₁,:x₂=>v₂,...)`
 ̀(p::Mvp)(x₁=v₁,,xₙ=vₙ)`

returns the value of p when doing the simultaneous substitution of the variable :x1 by v1, of x2 by v2, …

julia> p=-2+7x^5*inv(y)
Mvp{Int64}: 7x⁵y⁻¹-2

julia> p(x=2)
Mvp{Int64}: -2+224y⁻¹

julia> p(y=1)
Mvp{Int64}: 7x⁵-2

julia> p(x=2,y=1)
Mvp{Int64}: 222

One should pay attention to the fact that the last value is not an integer, but a constant Mvp (for consistency). See the function scalar for how to convert such constants to their base ring.

julia> p(x=y)
Mvp{Int64}: 7y⁴-2

julia> p(x=y,y=x)
Mvp{Int64}: -2+7x⁻¹y⁵

Evaluating an Mvp which is a Puiseux polynomial may cause calls to root

julia> p=x^(1//2)*y^(1//3)
Mvp{Int64,Rational{Int64}}: x½y⅓

julia> p(;x=y)
Mvp{Int64,Rational{Int64}}: y⅚

julia> p(;x=4)
Mvp{Int64,Rational{Int64}}: 2y⅓

julia> p(;y=2.0)
Mvp{Float64,Rational{Int64}}: 1.2599210498948732x½

source

# Base.conjFunction.

conj(p::Mvp) acts on the coefficients of p

julia> @Mvp x;conj(im*x+1)
Mvp{Complex{Int64}}: (0 - 1im)x+1 + 0im

source

# LaurentPolynomials.derivativeFunction.

The function 'derivative(p,v₁,…,vₙ)' returns the derivative of 'p' with respect to the variable given by the symbol 'v₁', then v₂, ...

julia> @Mvp x,y;p=7x^5*y^-1-2
Mvp{Int64}: 7x⁵y⁻¹-2

julia> derivative(p,:x)
Mvp{Int64}: 35x⁴y⁻¹

julia> derivative(p,:y)
Mvp{Int64}: -7x⁵y⁻²

julia> derivative(p,:x,:y)
Mvp{Int64}: -35x⁴y⁻²

julia> p=x^(1//2)*y^(1//3)
Mvp{Int64,Rational{Int64}}: x½y⅓

julia> derivative(p,:x)
Mvp{Rational{Int64},Rational{Int64}}: (1//2)x⁻½y⅓

julia> derivative(p,:y)
Mvp{Rational{Int64},Rational{Int64}}: (1//3)x½y⁻⅔

julia> derivative(p,:z)
Mvp{Rational{Int64},Rational{Int64}}: 0

source

# PuiseuxPolynomials.laurent_denominatorFunction.

laurent_denominator(p1,p2,…)

returns the unique monomial m of minimal degree in each variable such that for all the Laurent polynomials p1,p2,… the product m*pᵢ has a positive degree in each variable.

julia> laurent_denominator(x^-1,y^-2+x^4)
Monomial{Int64}:xy²

source

# Base.gcdMethod.

gcd(p::Mvp, q::Mvp) computes the gcd of the 'Mvp' arguments. The arguments must be true polynomials.

julia> gcd((x+y)^2,x^2-y^2)
Mvp{Int64}: x+y

source

# Base.lcmMethod.

lcm(p1,p2,...)

Returns the Lcm of the Mvp arguments. The arguments must be true polynomials.

julia> lcm(x^2-y^2,(x+y)^2)
Mvp{Int64}: -x³-x²y+xy²+y³

source

# LaurentPolynomials.scalarFunction.

scalar(p::Mvp)

If p is a scalar, return that scalar, otherwise return nothing.

julia> p=Mvp(:x)+1
Mvp{Int64}: x+1

julia> w=p(x=4)
Mvp{Int64}: 5

julia> scalar(w)
5

julia> typeof(scalar(w))
Int64

if p is an array, then apply scalar to its elements and return nothing if it contains any Mvp which is not a scalar.

source

# Base.:^Method.

Base.:^(p,m;vars=variables(p))

Implements the action of a matrix on Mvps. vars should be a list of symbols representing variables. The polynomial p is changed by simultaneous substitution in it of vᵢ by (v×m)ᵢ where v is the row vector with entries Mvp(vᵢ). If vars is omitted, it is taken to be variables(p).

julia> @Mvp x,y

julia> (x+y)^[1 2;3 1]
Mvp{Int64}: 3x+4y

source

# LaurentPolynomials.FracMethod.

Frac(a::Mvp,b::Mvp;pol=false,prime=false)

Mvps a and b are promoted to same coefficient type, and checked for being true polynomials without common monomial factor (unless pol=true asserts that this is already the case) and unless prime=true they are made prime to each other by dividing by their gcd.

source

# PuiseuxPolynomials.grobner_basisFunction.

grobner_basis(F;lt=lex)

computes a Gröbner basis of the polynomial ideal generated by the Mvps given by the vector F. The keyword lt describes the monomial ordering to use.

julia> @Mvp x,y,z; F=[x^2+y^2+z^2-1,x^2-y+z^2,x-z]
3-element Vector{Mvp{Int64, Int64}}:
 x²+y²+z²-1
 x²-y+z²
 x-z

julia> grobner_basis(F)
3-element Vector{Mvp{Int64, Int64}}:
 x-z
 -y+2z²
 4z⁴+2z²-1

julia> grobner_basis(F;lt=grlex)
3-element Vector{Mvp{Int64, Int64}}:
 x-z
 y²+y-1
 -y+2z²

julia> grobner_basis(F;lt=grevlex)
3-element Vector{Mvp{Int64, Int64}}:
 x-z
 y²+y-1
 2x²-y

There is no keyword to change the ordering of the variables. We suggest to use rename_variables for this purpose.

source

# PuiseuxPolynomials.rename_variablesFunction.

rename_variables(p,v) renames variables(p) to v

rename_variables(p,l::Pair{Symbol,Symbol}...) renames the variables in p as indicated by the pairs in l.

julia> @Mvp x,y,z; p=x+y+z
Mvp{Int64}: x+y+z

julia> rename_variables(p,Symbol.('A':'Z'))
Mvp{Int64}: A+B+C

julia> rename_variables(p,[:U,:V])
Mvp{Int64}: U+V+z

julia> rename_variables(p,:x=>:U,:z=>:V) # faster than p(;x=Mvp(:U),z=Mvp(:V))
Mvp{Int64}: U+V+y

source

Used By Packages