RobustFactorizations.jl

Robust SVD and PCA in Julia
Author baggepinnen
Popularity
7 Stars
Updated Last
10 Months Ago
Started In
February 2020

RobustFactorizations

CI Codecov

This package provides some utilities for robust factorization of matrices, useful for, e.g., matrix completion and denoising.

We try to find the low-rank matrix $L$ when given matrix $L_n$ corrupted by sparse noise $S$ and dense noise $D$ according to $L_n = L + D + S$. Typically, $S$ contains very few entries, but they may be very large, while the entries in $D$ are much smaller, and maybe normally distributed.

Examples

Only sparse noise

L = lowrank(100,10,3)
S = 10sparserandn(100,10)
Ln = L + S
res = rpca(Ln, verbose=false)
@show opnorm(L - res.L)/opnorm(L)

Dense and sparse noise

L = lowrank(100,10,3)      # A low-rank matrix
D = randn(100,10)          # A dense noise matrix
S = 10sparserandn(100,10)  # A sparse noise matrix (large noise)
Ln = L + D + S             # Ln is the sum of them all
λ = 1/sqrt(maximum(size(L)))
res1 = rpca(Ln, verbose=false)
res2 = rpca(Ln, verbose=false, proxD=SqrNormL2/std(D))) # proxD parameter might need tuning
@show opnorm(L - res1.L)/opnorm(L), opnorm(L - res2.L)/opnorm(L)

Functions

The rpca function is the recommended default choice:

rpca(Ln::Matrix; λ=1.0 / (maximum(size(A))), iters=1000, tol=1.0e-7, ρ=1.5, verbose=false, nonnegL=false, nonnegS=false, nukeA=true)

It solves the following problem:

$$\text{minimize}_{L,D,S} ||L||_* + \lambda ||S||_1 + \gamma ||D||^2_2 \quad \text{s.t. } L_n = L+D+S$$

Reference:

"The Augmented Lagrange Multiplier Method for Exact Recovery of Corrupted Low-Rank Matrices", Zhouchen Lin, Minming Chen, Leqin Wu, Yi Ma, https://people.eecs.berkeley.edu/~yima/psfile/Lin09-MP.pdf

Arguments:

  • Ln: Input data matrix
  • λ: Sparsity regularization
  • iters: Maximum number of iterations
  • tol: Tolerance
  • ρ: Algorithm tuning param
  • verbose: Print status
  • nonnegL: Hard thresholding on A
  • nonnegS: Hard thresholding on E
  • proxL: Defaults to NuclearNorm(1/2)
  • proxD: Defaults to nothing
  • proxS: Defaults to NormL1(λ))

To speed up convergence you may either increase the tolerance or increase ρ. Increasing tol is often the best solution.

Used By Packages

No packages found.