SatelliteToolboxBase.jl

Base constants, functions, and types for the SatelliteToolbox.jl ecosystem.
Author JuliaSpace
Popularity
3 Stars
Updated Last
2 Months Ago
Started In
April 2023


This package is part of the SatelliteToolbox.jl ecosystem.

SatelliteToolboxBase.jl

CI codecov Code Style: Blue DOI

This package contains base functions and type definitions for the SatelliteToolbox.jl ecosystem.

Note This package contains only basic definitions used for other packages in the SatelliteToolbox.jl. You will need to install other packages to perform analyses and studies.

Installation

julia> using Pkg
julia> Pkg.add("SatelliteToolboxBase")

Usage

Constants

We define and export the following constants in this package:

Constant Description
ASTRONOMICAL_UNIT The approximate distance between the Earth and the Sun.
GM_EARTH Earth's standard gravitational parameter.
EARTH_ANGULAR_SPEED Earth's angular speed without LOD correction.
EARTH_EQUATORIAL_RADIUS Earth's equatorial radius (WGS-84).
EARTH_ORBIT_MEAN_MOTION Earth's orbit mean motion.
EARTH_POLAR_RADIUS Earth's polar radius (WGS-84).
WGS84_ELLIPSOID The WGS-84 ellipsoid defined using the structure Ellipsoid{Float64}.
WGS84_ELLIPSOID_F32 The WGS-84 ellipsoid defined using the structure Ellipsoid{Float32}.
EGM_1996_J2 J2 perturbation term obtained from EGM-1996 model.
EGM_1996_J3 J3 perturbation term obtained from EGM-1996 model.
EGM_1996_J4 J4 perturbation term obtained from EGM-1996 model.
EGM_2008_J2 J2 perturbation term obtained from EGM-2008 model.
EGM_2008_J3 J3 perturbation term obtained from EGM-2008 model.
EGM_2008_J4 J4 perturbation term obtained from EGM-2008 model.
SUN_RADIUS Sun radius.
JD_J2000 Julian Day of J2000.0 epoch (2000-01-01T12:00:00.000).

Orbit

This package defines the abstract type Orbit for all orbit representations.

Currently, we defined two types to represent an orbit: KeplerianElements and OrbitStateVector.

KeplerianElements defines an orbit in terms of the Keplerian elements. This object is created using the function:

KeplerianElements(t::Tepoch, a::T1, e::T2, i::T3, Ω::T4, ω::T5, f::T6)

where it returns an orbit representation using Keplerian elements with semi-major axis a [m], eccentricity e [ ], inclination i [rad], right ascension of the ascending node Ω [rad], argument of perigee ω [rad], and true anomaly f [rad].

julia> orb = KeplerianElements(
           date_to_jd(1986, 6, 19, 18, 35, 0),
           7130.982e3,
              0.0001111,
             98.405 |> deg2rad,
            200.000 |> deg2rad,
             90.000 |> deg2rad,
            123.456 |> deg2rad,
       )
KeplerianElements{Float64, Float64}:
           Epoch :    2.4466e6 (1986-06-19T18:35:00)
 Semi-major axis : 7130.98      km
    Eccentricity :    0.0001111
     Inclination :   98.405     °
            RAAN :  200.0       °
 Arg. of Perigee :   90.0       °
    True Anomaly :  123.456     °

OrbitStateVector defines the orbit in terms of the object state vector. This object is created using the function:

OrbitStateVector(t::Tepoch, r::AbstractVector{Tr}, v::AbstractVector{Tv}[, a::AbstractVector{Ta}])

where it creates an orbit state vector with epoch t [Julian Day], position r [m], velocity v [m / s], and acceleration a [m / s²]. If the latter is omitted, it will be filled with [0, 0, 0].

julia> r_i = [6525.344; 6861.535; 6449.125] * 1000
3-element Vector{Float64}:
 6.525344e6
 6.861535e6
 6.449125e6

julia> v_i = [49.02276; 55.33124; -19.75709] * 1000
3-element Vector{Float64}:
  49022.759999999995
  55331.24
 -19757.09

julia> sv = OrbitStateVector(date_to_jd(1986, 6, 19, 18, 35, 0), r_i, v_i)
OrbitStateVector{Float64, Float64}:
  epoch : 2.4466e6 (1986-06-19T18:35:00)
      r : [6525.34, 6861.53, 6449.12]   km
      v : [49.0228, 55.3312, -19.7571]  km/s

The conversion between the orbit representations can be performed using the following functions:

  • kepler_to_rv: Convert the Keplerian elements to Cartesian position and velocity.
  • kepler_to_sv: convert the Keplerian elements to orbit state vector.
  • rv_to_kepler: Convert the Cartesian position and velocity to Keplerian elements.
  • sv_to_kepler: Convert the orbit state vector to Keplerian elements.

For more information, see the built-in documentation of those functions.

Conversion between Orbit Anomalies

There are three types of anomalies (angles) that can be used to describe the position of the satellite in the orbit plane with respect to the argument of perigee:

  • The mean anomaly (M);
  • The eccentric anomaly (E); and
  • The true anomaly (f).

This package contains the following functions that can be used to convert one to another:

mean_to_eccentric_anomaly(e::Number, M::Number; kwargs...) -> T
mean_to_true_anomaly(e::Number, M::Number; kwargs...) -> T
eccentric_to_true_anomaly(e::Number, E::Number) -> T
eccentric_to_mean_anomaly(e::Number, E::Number) -> T
true_to_eccentric_anomaly(e::Number,f::Number) -> T
true_to_mean_anomaly(e::Number, f::Number) -> T

where:

  • M is the mean anomaly [rad];
  • E is the eccentric anomaly [rad];
  • f is the true anomaly [rad];
  • e is the eccentricity.
  • T is the output type obtained by promoting T1 and T2 to float.

All the returned values are in [rad].

The functions mean_to_eccentric and mean_to_true uses the Newton-Raphson algorithm to solve the Kepler's equation. In this case, the following keywords are available to configure it:

  • tol::Union{Nothing, Number}: Tolerance to accept the solution from Newton-Raphson algorithm. If tol is nothing, then it will be eps(T), where T is a floating-point type obtained from the promotion of T1 and T2 to a float. (Default = nothing)
  • max_iterations::Number: Maximum number of iterations allowed for the Newton-Raphson algorithm. If it is lower than 1, then it is set to 10. (Default = 10)
julia> mean_to_eccentric_anomaly(0.04, pi / 4)
0.814493281928579

julia> mean_to_true_anomaly(0.04, pi / 4)
0.8440031124631191

julia> true_to_mean_anomaly(0.04, pi / 4)
0.7300148523821107

julia> mean_to_true_anomaly(0, 0.343)
0.3430000000000001

julia> mean_to_true_anomaly(0.04, 0.343)
0.3712280339918371

Time

Note Julia already has some of the functionality implemented here. However, we use those functions for historical reasons or because the implementation here is more straightforward. For example, currently, we need to break an instant into year, month, day, hour, minute, second, and millisecond to convert it to Julian day using Julia's Dates package, where all terms must be Integers. Here, date_to_jd accepts a floating-point seconds, leading to a easier initialization.

Converting epochs to Julian day

An epoch can be converted to Julian day using the function date_to_jd. This function can receive:

  • A set of numbers indicating the year, month, day, hour (24h-format), minute, and second;
  • An object of type Date; or
  • An object of type DateTime.
julia> date_to_jd(1986, 6, 19, 18, 35, 10.123456)
2.446601274422725e6

julia> date_to_jd(1986, 6, 19)
2.4466005e6

julia> date_to_jd(Date(1986, 6, 19))
2.4466005e6

julia> date_to_jd(DateTime(1986, 6, 19, 18, 35, 10))
2.446601274421296e6

Converting Julian day to epochs

We can convert a Julian day to an epoch using the function jd_to_date. Its signature is:

jd_to_date([T,] JD::Number)

where T is the converted object format.

If T is omitted or Int, then a tuple with the following data will be returned:

  • Year.
  • Month (1 => January, 2 => February, ...).
  • Day.
  • Hour (0 - 24).
  • Minute (0 - 59).
  • Second (0 - 59).

Notice that if T is Int, the seconds field will be rounded to an Int. Otherwise, it will be floating point.

If T is Date, it will return the Julia structure Date. Notice that the hours, minutes, and seconds will be neglected because the structure Date does not support them.

If T is DateTime, it will return the Julia structure DateTime.

julia> jd_to_date(2.446601274422725e6)
(1986, 6, 19, 18, 35, 10.1234570145607)

julia> jd_to_date(Int, 2.446601274422725e6)
(1986, 6, 19, 18, 35, 10)

julia> jd_to_date(Date, 2.446601274422725e6)
1986-06-19

julia> jd_to_date(DateTime, 2.446601274422725e6)
1986-06-19T18:35:10.123

Greenwich mean sidereal time

The function jd_to_gmst converts a Julian day into the Greenwich mean sidereal time [rad]:

julia> jd_to_gmst(2.446601274422725e6)
3.2547373166809748