SatelliteToolboxCelestialBodies.jl

General functions related to celestial bodies for the SatelliteToolbox.jl ecosystem.
Author JuliaSpace
Popularity
2 Stars
Updated Last
7 Months Ago
Started In
May 2023


This package is part of the SatelliteToolbox.jl ecosystem.

SatelliteToolboxCelestialBodies.jl

CI codecov Code Style: Blue DOI

This package contains functions to compute the position and velocity of some celestial bodies for the SatelliteToolbox.jl ecosystem.

Installation

julia> using Pkg
julia> Pkg.add("SatelliteToolboxCelestialBodies.jl")

Usage

Sun

We can compute the Sun position represented in the Mean-Of-Date (MOD) reference frame [1] using the functions:

sun_position_mod(jd_tdb::Number) -> SVector{3, Float64}
sun_position_mod(date_tdb::DateTime) -> SVector{3, Float64}

where the input time jd_tdb (Julian Day) or date_tdb must be represented in the Barycentric Dynamical Time (TDB).

julia> sun_position_mod(now())
3-element StaticArraysCore.SVector{3, Float64} with indices SOneTo(3):
 7.281649894711235e10
 1.2182511371727788e11
 5.2809968734836815e10

We can also compute the Sun velocity represented in MOD frame as measured by an observer in the same frame:

sun_velocity_mod(jd_tdb::Number) -> SVector{3, Float64}
sun_velocity_mod(date_tdb::DateTime) -> SVector{3, Float64}

where the input time jd_tdb (Julian Day) or date_tdb must be represented in the Barycentric Dynamical Time (TDB).

Note This algorithm was obtained by differentiating the Sun position equations in [1].

julia> sun_velocity_mod(now())
3-element StaticArraysCore.SVector{3, Float64} with indices SOneTo(3):
 -25645.525387897742
  13231.300593568181
   5735.626095163374

Moon

We can compute the Moon position represented in the Mean-Of-Date (MOD) reference frame [1, 2] using the functions:

moon_position_mod(jd_tdb::Number[, model]) -> SVector{3, Float64}
moon_position_mod(date_tdb::DateTime[, model]) -> SVector{3, Float64}

where the input time jd_tdb (Julian Day) or date_tdb must be represented in the Barycentric Dynamical Time (TDB).

The model must be Val(:Meeus) or Val(:Vallado). Val(:Meeus) uses the algorithm in [2, p. 337] that provides an accuracy of 10" in the longitude and 4" in the latitude (the reference does not mention the timespan). Val(:Vallado) uses the algorithm in [1, p. 288] that is 10x faster than Val(:Meeus) but can lead to errors of 0.3° in longitude and 0.2° in latitude.

julia> moon_position_mod(now())
3-element StaticArraysCore.SVector{3, Float64} with indices SOneTo(3):
 -4.992612797700085e7
  3.48593091076279e8
  1.864034978650991e8

julia> moon_position_mod(now(), Val(:Vallado))
3-element StaticArraysCore.SVector{3, Float64} with indices SOneTo(3):
 -4.991011671868989e7
  3.481318482554912e8
  1.8647115876567587e8

Rationale

The packages in JuliaAstro provide the same functionality with usually more precision than the algorithms here. However, our goal is to build an attitude and orbit control subsystem written in Julia. In this case, the footprint of each package matters. Hence, we created this small package to contain the necessary functions since the extensive feature list in the other packages is unnecessary here.

References

  • [1] Vallado, D. A (2013). Fundamentals of Astrodynamics and Applications. 4th ed. Microcosm Press, Hawthorn, CA, USA.
  • [2] Meeus, J (1998). Astronomical algorithms. Willmann-Bell, Inc, Richmond, VA.