StochasticRounding.jl
Stochastic rounding for floating-point arithmetic.
This package exports Float32sr
,Float16sr
, and BFloat16sr
, three number formats that behave
like their deterministic counterparts but with stochastic rounding that is proportional to the
distance of the next representable numbers and therefore
exact in expectation
(see also example below in "Usage"). The only known hardware implementation available are
Graphcore's IPUs with stochastic rounding.
The software emulation of stochastic rounding in StochasticRounding.jl makes the number format
slower, but e.g. Float32+stochastic rounding is only about 2x slower than Float64.
Xoroshiro128Plus,
a random number generator from the Xorshift family, is used through the
RandomNumbers.jl package, due to its speed and statistical properties.
You are welcome to raise issues, ask questions or suggest any changes or new features.
BFloat16sr
is based on BFloat16s.jl
Float16sr
is slow in Julia <1.6, but fast in Julia >=1.6 due to LLVM's half
support.
Usage
julia> a = BFloat16sr(1.0)
BFloat16sr(1.0)
julia> a/3
BFloat16sr(0.33398438)
julia> a/3
BFloat16sr(0.33203125)
As 1/3
is not exactly representable the rounding will be at 66.6% chance towards 0.33398438
and at 33.3% towards 0.33203125 such that in expectation the result is 0.33333... and therefore exact.
You can use BFloat16_chance_roundup(x::Float32)
to get the chance that x
will be round up.
The random number generator is randomly seeded on every import
or using
such that running
the same calculations twice, will not yield bit-reproducible results. However, you can seed
the random number generator at any time with any integer larger than zero as follows
julia> StochasticRounding.seed(2156712)
Theory
Round-to-nearest (tie to even) is the standard rounding mode for IEEE floats. Stochastic rounding is explained in the following schematic
The exact result x of an arithmetic operation (located at one fifth between x₂ and x₃ in this example) is always rounded down to x₂ for round-to-nearest. For stochastic rounding, only at 80% chance x is round down. At 20% chance it is round up to x₃, proportional to the distance of x between x₂ and x₃.
Subnormals
From v0.6 onwards all subnormals of Float32, Float16, BFloat16 are also stochastically rounded.
Installation
StochasticRounding.jl is registered in the Julia registry. Hence, simply do
julia>] add StochasticRounding
where ]
opens the package manager.
Performance
StochasticRounding.jl is among the fastest software implementation of stochastic rounding for floating-point arithmetic. Define a few random 1000000-element arrays
julia> using StochasticRounding, BenchmarkTools, BFloat16s
julia> A = rand(Float64,1000000);
julia> B = rand(Float64,1000000); # A, B shouldn't be identical as a+a=2a is not round
And similarly for the other number types. Then with Julia 1.6 on an Intel(R) Core(R) i5 (Ice Lake) @ 1.1GHz timings via
@btime +($A,$B)
are
rounding mode | Float64 | Float32 | Float16 | BFloat16 |
---|---|---|---|---|
round to nearest | 1132 μs | 452 μs | 1588 μs | 315 μs |
stochastic rounding | n/a | 2650 μs | 3310 μs | 1850 μs |
Stochastic rounding imposes an about x5 performance decrease for Float32 and BFloat16, but only x2 for Float16. For more complicated benchmarks the performance decrease is usually within x10. About 50% of the time is spend on the random number generation with Xoroshiro128+.
Citation
If you use this package please cite us
Paxton EA, M Chantry, M Klöwer, L Saffin, TN Palmer, 2022. Climate Modelling in Low-Precision: Effects of both Deterministic & Stochastic Rounding, Journal of Climate, 10.1175/JCLI-D-21-0343.1