Dependency Packages
-
Plots.jl1825Powerful convenience for Julia visualizations and data analysis
-
Zygote.jl147621st century AD
-
ModelingToolkit.jl1410An acausal modeling framework for automatically parallelized scientific machine learning (SciML) in Julia. A computer algebra system for integrated symbolics for physics-informed machine learning and automated transformations of differential equations
-
Symbolics.jl1353Symbolic programming for the next generation of numerical software
-
Optim.jl1116Optimization functions for Julia
-
Distributions.jl1102A Julia package for probability distributions and associated functions.
-
ForwardDiff.jl888Forward Mode Automatic Differentiation for Julia
-
StaticArrays.jl761Statically sized arrays for Julia
-
LoopVectorization.jl742Macro(s) for vectorizing loops.
-
Optimization.jl712Mathematical Optimization in Julia. Local, global, gradient-based and derivative-free. Linear, Quadratic, Convex, Mixed-Integer, and Nonlinear Optimization in one simple, fast, and differentiable interface.
-
ProgressMeter.jl693Progress meter for long-running computations
-
DataStructures.jl690Julia implementation of Data structures
-
TimerOutputs.jl651Formatted output of timed sections in Julia
-
HTTP.jl632HTTP for Julia
-
BenchmarkTools.jl607A benchmarking framework for the Julia language
-
Unitful.jl603Physical quantities with arbitrary units
-
StatsBase.jl584Basic statistics for Julia
-
JuliaFormatter.jl569An opinionated code formatter for Julia. Plot twist - the opinion is your own.
-
Latexify.jl558Convert julia objects to LaTeX equations, arrays or other environments.
-
SymbolicUtils.jl537Symbolic expressions, rewriting and simplification
-
OrdinaryDiffEq.jl533High performance ordinary differential equation (ODE) and differential-algebraic equation (DAE) solvers, including neural ordinary differential equations (neural ODEs) and scientific machine learning (SciML)
-
Graphs.jl457An optimized graphs package for the Julia programming language
-
Enzyme.jl438Julia bindings for the Enzyme automatic differentiator
-
ChainRules.jl435Forward and reverse mode automatic differentiation primitives for Julia Base + StdLibs
-
Distances.jl425A Julia package for evaluating distances (metrics) between vectors.
-
Parameters.jl419Types with default field values, keyword constructors and (un-)pack macros
-
MLStyle.jl402Julia functional programming infrastructures and metaprogramming facilities
-
MathOptInterface.jl388A data structure for mathematical optimization problems
-
DSP.jl379Filter design, periodograms, window functions, and other digital signal processing functionality
-
Cassette.jl370Overdub Your Julia Code
-
Manifolds.jl368Manifolds.jl provides a library of manifolds aiming for an easy-to-use and fast implementation.
-
KernelAbstractions.jl363Heterogeneous programming in Julia
-
GR.jl354Plotting for Julia based on GR, a framework for visualisation applications
-
SpecialFunctions.jl350Special mathematical functions in Julia
-
ReverseDiff.jl348Reverse Mode Automatic Differentiation for Julia
-
Krylov.jl338A Julia Basket of Hand-Picked Krylov Methods
-
SciMLSensitivity.jl329A component of the DiffEq ecosystem for enabling sensitivity analysis for scientific machine learning (SciML). Optimize-then-discretize, discretize-then-optimize, adjoint methods, and more for ODEs, SDEs, DDEs, DAEs, etc.
-
NLsolve.jl324Julia solvers for systems of nonlinear equations and mixed complementarity problems
-
StructArrays.jl319Efficient implementation of struct arrays in Julia
-
GPUArrays.jl317Reusable array functionality for Julia's various GPU backends.
Loading more...