Machine Learning Packages
-
ApproxBayes.jl52Approximate Bayesian Computation (ABC) algorithms for likelihood free inference in julia
-
MLDatasets.jl227Utility package for accessing common Machine Learning datasets in Julia
-
LearnBase.jl17Abstractions for Julia Machine Learning Packages
-
ScikitLearnBase.jl9Abstract interface of ScikitLearn.jl
-
ScikitLearn.jl546Julia implementation of the scikit-learn API https://cstjean.github.io/ScikitLearn.jl/dev/
-
MLDataUtils.jl102Utility package for generating, loading, splitting, and processing Machine Learning datasets
-
HSIC.jl5Julia implementations of the Hilbert-Schmidt Independence Criterion (HSIC)
-
Flimsy.jl1Gradient based Machine Learning for Julia
-
DecisionTrees.jl3-
-
Merlin.jl144Deep Learning for Julia
-
TensorFlow.jl884A Julia wrapper for TensorFlow
-
ValueHistories.jl29Utilities to efficiently track learning curves or other optimization information
-
LossFunctions.jl147Julia package of loss functions for machine learning.
-
MochaTheano.jl0Allow use of Theano for automatic differentiation within Mocha, via PyCall
-
LIBLINEAR.jl12LIBLINEAR bindings for Julia
-
MXNet.jl371MXNet Julia Package - flexible and efficient deep learning in Julia
-
Knet.jl1427Koç University deep learning framework.
-
MIDI.jl67A Julia library for handling MIDI files
-
Strada.jl33A deep learning library for Julia based on Caffe
-
SVMLightLoader.jl5Loader of svmlight / liblinear format files
-
SoftConfidenceWeighted.jl8Exact Soft Confidence-Weighted Learning
-
OnlineAI.jl34Machine learning for sequential/streaming data
-
Ladder.jl17A reliable leaderboard algorithm for machine learning competitions
-
PrivateMultiplicativeWeights.jl46Differentially private synthetic data
-
TSVD.jl40Truncated singular value decomposition with partial reorthogonalization
-
ProjectiveDictionaryPairLearning.jl16Julia code for the paper S. Gu, L. Zhang, W. Zuo, and X. Feng, “Projective Dictionary Pair Learning for Pattern Classification,” In NIPS 2014
-
Learn.jl2Base framework library for machine learning packages.
-
Discretizers.jl18A Julia package for data discretization and label maps
-
Kernels.jl78Machine learning kernels in Julia.
-
MLKernels.jl78Machine learning kernels in Julia.
-
EGR.jl1-
-
KDTrees.jl25KDTrees for julia
-
FunctionalDataUtils.jl7Utility functions for the FunctionalData package, mainly from the area of computer vision / machine learning
-
Contingency.jl1Experimental automated machine learning for Julia.
-
BNMF.jl5Bayesian Non-negative Matrix Factorization
-
ConfidenceWeighted.jl1Confidence weighted classifier
-
GradientBoost.jl22Gradient boosting framework for Julia.
-
Ollam.jl7OLLAM: Online Learning of Linear Adaptable Models
-
ELM.jl27Extreme Learning Machine in julia
-
RegERMs.jl16DEPRECATED: Regularised Empirical Risk Minimisation Framework (SVMs, LogReg, Linear Regression) in Julia
Loading more...