FSimBase.jl

The lightweight base package for numerical simulation supporting nested dynamical systems and macro-based data logger. For more functionality, see FlightSims.jl.
Author JinraeKim
Popularity
5 Stars
Updated Last
7 Months Ago
Started In
September 2021

FSimBase

FSimBase.jl is the lightweight base library for numerical simulation supporting nested dynamical systems and macro-based data logger, compatible with DifferentialEquations.jl.

Notes

APIs

Main APIs are provided in src/APIs.

Make an environment

  • AbstractEnv: an abstract type for user-defined and predefined environments. In general, environments is a sub-type of AbstractEnv.
    struct LinearSystemEnv <: AbstractEnv
        A
        B
    end
  • State(env::AbstractEnv): return a function that produces structured states.
    function State(env::LinearSystemEnv)
        @unpack B = env
        n = size(B)[1]
        return function (x)
            @assert length(x) == n
            x
        end
    end
  • Dynamics!(env::AbstractEnv): return a function that maps in-place dynamics, compatible with DifferentialEquations.jl. User can extend these methods or simply define other methods.
    function Dynamics!(env::LinearSystemEnv)
        @unpack A, B = env
        @Loggable function dynamics!(dx, x, p, t; u)  # data would not be saved without @Loggable. Follow this form!
            @log state = x  # syntax sugar; macro-based logging
            @log input = u
            dx .= A*x + B*u
        end
    end
  • (Optional) Params(env::AbstractEnv): returns structured parameters of given environment env.

Simulation, logging, and data saving & loading

Simulator

  • Simulator(state0, dyn, p; Problem, solver) is a simulator struct that will be simulated by solve (non-interactive) or step! and step_until! (interactive). Problem = :ODE and Problem = :Discrete imply ODEProblem and DiscreteProblem, respectively. For more details, see src/APIs/simulation.jl.

Non-interactive interface (e.g., compatible with callbacks from DifferentialEquations.jl)

  • solve(simulation::Simulator) will solve (O)DE and provide df::DataFrame.

Interactive interface (you should be aware of how to use integrator interface in DifferentialEquations.jl)

  • reinit!(simulator::Simulator) will reinitialise simulator::Simulator.
  • step!(simulator::Simulator, Δt; stop_at_tdt=true) will step the simulator::Simulator as Δt.
  • step_until!(simulator::Simulator, tf) will step the simulator::Simulator until tf.
  • push!(simulator::Simulator, df::DataFrame) will push a datum from simulator to df.

Utilities

  • apply_inputs(func; kwargs...)
    • By using this, user can easily apply external inputs into environments. It is borrowed from an MRAC example of ComponentArrays.jl and extended to be compatible with SimulationLogger.jl.
    • (Limitations) for now, dynamical equations wrapped by apply_inputs will automatically generate logging function (even without @Loggable). In this case, all data will be an array of empty NamedTuple.
  • Macros for logging data: @Loggable, @log, @onlylog, @nested_log, @nested_onlylog.

Examples

Custom environments, discrete problems, etc.

See directory ./test.

(TL; DR) Minimal example

using FSimBase
using DifferentialEquations
using ComponentArrays
using Test
using LinearAlgebra
using DataFrames


function main()
    state0 = [1.0, 2.0]
    p = 1
    tf = 1.0
    Δt = 0.01
    @Loggable function dynamics!(dx, x, p, t)
        @log t
        @log x
        dx .= -p.*x
    end
    simulator = Simulator(
                          state0, dynamics!, p;
                          Problem=ODEProblem,
                          solver=Tsit5(),
                          tf=tf,
                         )
    # solve approach (automatically reinitialised)
    @time _df = solve(simulator; savestep=Δt)
    # interactive simulation
    ## step!
    reinit!(simulator)
    step!(simulator, Δt)
    @test simulator.integrator.t  Δt
    ## step_until! (callback-like)
    ts_weird = 0:Δt:tf+Δt
    df_ = DataFrame()
    reinit!(simulator)
    @time for t in ts_weird
        flag = step_until!(simulator, t)  # flag == false if step is inappropriate
        if simulator.integrator.u[1] < 5e-1
            break
        else
            push!(simulator, df_, flag)  # push data only when flag == true
        end
    end
    println(df_[end-5:end, :])
    ## step_until!
    df = DataFrame()
    reinit!(simulator)
    @time for t in ts_weird
        step_until!(simulator, t)
        push!(simulator, df)  # flag=true is default
        # safer way:
        # flag = step_until!(simulator, t)
        # push!(simulator, df, flag)
        # or, equivalently,
        # push!(simulator, df, step_until!(simulator, t))  # compact form
    end
    println(df[end-5:end, :])
    @test norm(_df.sol[end].x - df.sol[end].x) < 1e-6
    @test simulator.integrator.t  tf
end

@testset "minimal" begin
    main()
end

ex_screenshot

Related packages

Dependencies