Access the Met Office Historic station data.
These are monthly summaries of weather from across the UK, with long histories.
If you know the short_name
of a station, you can obtain the data like so:
using MetOfficeStationData
MetOfficeStationData.get_frame("cambridge")
779×7 DataFrame
Row │ yyyy mm tmax tmin af rain sun
│ Int64 Int64 Float64 Float64 Int64 Float64? Float64?
─────┼─────────────────────────────────────────────────────────────
1 │ 1959 1 4.4 -1.4 20 missing 78.1
2 │ 1959 2 7.5 1.2 9 missing 66.0
3 │ 1959 3 11.5 3.8 0 missing 98.0
4 │ 1959 4 14.3 5.4 0 missing 146.1
5 │ 1959 5 18.1 6.5 0 missing 224.8
6 │ 1959 6 21.6 10.1 0 missing 252.4
...
To obtain metadata for all stations, including the short_name
s needed for MetOfficeStationData.get_frame
:
MetOfficeStationData.get_station_metadata()
37×5 DataFrame
Row │ name lat lon year_start short_name
│ String Float64 Float64 Int64 SubString…
─────┼───────────────────────────────────────────────────────────────────────────
1 │ Aberporth 52.139 -4.57 1941 aberporth
2 │ Armagh 54.352 -6.649 1853 armagh
3 │ Ballypatrick Forest 55.181 -6.153 1961 ballypatrick
4 │ Bradford 53.813 -1.772 1908 bradford
5 │ Braemar No 2 57.011 -3.396 1959 braemar
...
Run the example Pluto.jl notebook for a simple interactive visualsation of the data.
For example, for the Cambridge Niab station, as of January 2024:
The data files given by the Met Office include various annotations, e.g. noting the types of sensor used, or whether data is preliminary, or even if a station changed location. We do not preserve any of this!