NarmViz.jl

Visualize time series numerical association rules
Author firefly-cpp
Popularity
0 Stars
Updated Last
10 Months Ago
Started In
March 2023

NarmViz.jl

GitHub license GitHub commit activity version All Contributors

About ๐Ÿ“‹

NarmViz.jl is a Julia framework primarily developed to visualize time series numerical association rules. ๐Ÿ“ˆ The framework also supports visualization of other numerical association rules.

Detailed insights โœจ

The current version includes (but is not limited to) the following functions:

  • loading datasets in CSV format ๐Ÿ“
  • preprocessing of data ๐Ÿ”„
  • visualization of association rules ๐Ÿ“Š
  • exporting figures to files ๐Ÿ’พ

Visualization examples ๐Ÿ“Š

Example 1 Example 2
Example 3 Example 4

Installation ๐Ÿ“ฆ

pkg> add NarmViz

Usage ๐Ÿš€

Basic run example

using NarmViz
using NiaARM

# load transaction database
dataset = Dataset("datasets/random_sportydatagen.csv")

# vector of antecedents
antecedent = Attribute[
    NumericalAttribute("duration", 50, 65),
    NumericalAttribute("distance", 15.0, 40.0),
]

# vector of consequents
consequent = Attribute[
    NumericalAttribute("calories", 200.0, 450.0),
    NumericalAttribute("descent", 50.0, 140.0),
]

rule = Rule(antecedent, consequent)

# call the visualization function
visualize(
    rule,
    dataset,
    path="example.pdf", # path (if not specified, the plot will be displayed in the GUI)
    allfeatures=false, # visualize all features, not only antecedents and consequence
    antecedent=true, # visualize antecedent
    consequent=true, # visualize consequent
    timeseries=true, # set false for non-time series datasets
    intervalcolumn="interval", # Name of the column which denotes the interval (only for time series datasets)
    interval=3 # which interval to visualize
)

References ๐Ÿ“š

Ideas are based on the following research papers:

[1] Fister Jr, I., Fister, I., Fister, D., Podgorelec, V., & Salcedo-Sanz, S. (2023). A comprehensive review of visualization methods for association rule mining: Taxonomy, Challenges, Open problems and Future ideas. arXiv preprint arXiv:2302.12594.

[2] Fister Jr, I., Fister, D., Fister, I., Podgorelec, V., & Salcedo-Sanz, S. (2022). Time series numerical association rule mining variants in smart agriculture. arXiv preprint arXiv:2212.03669.

[3] I. Fister Jr., I. Fister A brief overview of swarm intelligence-based algorithms for numerical association rule mining. arXiv preprint arXiv:2010.15524 (2020).

[4] I. Fister Jr., A. Iglesias, A. Gรกlvez, J. Del Ser, E. Osaba, I Fister. Differential evolution for association rule mining using categorical and numerical attributes In: Intelligent data engineering and automated learning - IDEAL 2018, pp. 79-88, 2018.

Related software ๐Ÿ”—

NiaARM.jl

Cite us

Fister, I. Jr, Fister, I., Podgorelec, V., Salcedo-Sanz, S., & Holzinger, A. (2024). NarmViz: A novel method for visualization of time series numerical association rules for smart agriculture. Expert Systems, 41(3), e13503. https://doi.org/10.1111/exsy.13503

License

This package is distributed under the MIT License. This license can be found online at http://www.opensource.org/licenses/MIT.

Disclaimer

This framework is provided as-is, and there are no guarantees that it fits your purposes or that it is bug-free. Use it at your own risk!

Contributors

Iztok Fister Jr.
Iztok Fister Jr.

๐Ÿ’ป ๐Ÿ“– โš ๏ธ ๐Ÿค” ๐Ÿง‘โ€๐Ÿซ
zStupan
zStupan

๐Ÿ’ป ๐Ÿ› โš ๏ธ
Tadej Lahovnik
Tadej Lahovnik

๐Ÿ“–

Used By Packages

No packages found.