132 Packages since 2013
User Packages
-
DifferentialEquations.jl2841Multi-language suite for high-performance solvers of differential equations and scientific machine learning (SciML) components. Ordinary differential equations (ODEs), stochastic differential equations (SDEs), delay differential equations (DDEs), differential-algebraic equations (DAEs), and more in Julia.
-
ModelingToolkit.jl1410An acausal modeling framework for automatically parallelized scientific machine learning (SciML) in Julia. A computer algebra system for integrated symbolics for physics-informed machine learning and automated transformations of differential equations
-
NeuralNetDiffEq.jl966Physics-Informed Neural Networks (PINN) Solvers of (Partial) Differential Equations for Scientific Machine Learning (SciML) accelerated simulation
-
NeuralPDE.jl966Physics-Informed Neural Networks (PINN) Solvers of (Partial) Differential Equations for Scientific Machine Learning (SciML) accelerated simulation
-
DiffEqFlux.jl861Pre-built implicit layer architectures with O(1) backprop, GPUs, and stiff+non-stiff DE solvers, demonstrating scientific machine learning (SciML) and physics-informed machine learning methods
-
DiffEqTutorials.jl713Tutorials for doing scientific machine learning (SciML) and high-performance differential equation solving with open source software.
-
SciMLTutorials.jl713Tutorials for doing scientific machine learning (SciML) and high-performance differential equation solving with open source software.
-
Optimization.jl712Mathematical Optimization in Julia. Local, global, gradient-based and derivative-free. Linear, Quadratic, Convex, Mixed-Integer, and Nonlinear Optimization in one simple, fast, and differentiable interface.
-
GalacticOptim.jl712Mathematical Optimization in Julia. Local, global, gradient-based and derivative-free. Linear, Quadratic, Convex, Mixed-Integer, and Nonlinear Optimization in one simple, fast, and differentiable interface.
-
OrdinaryDiffEq.jl533High performance ordinary differential equation (ODE) and differential-algebraic equation (DAE) solvers, including neural ordinary differential equations (neural ODEs) and scientific machine learning (SciML)
-
Catalyst.jl455Chemical reaction network and systems biology interface for scientific machine learning (SciML). High performance, GPU-parallelized, and O(1) solvers in open source software.
-
DiffEqBiological.jl455Chemical reaction network and systems biology interface for scientific machine learning (SciML). High performance, GPU-parallelized, and O(1) solvers in open source software.
-
DataDrivenDiffEq.jl405Data driven modeling and automated discovery of dynamical systems for the SciML Scientific Machine Learning organization
-
DiffEqSensitivity.jl329A component of the DiffEq ecosystem for enabling sensitivity analysis for scientific machine learning (SciML). Optimize-then-discretize, discretize-then-optimize, adjoint methods, and more for ODEs, SDEs, DDEs, DAEs, etc.
-
Surrogates.jl329Surrogate modeling and optimization for scientific machine learning (SciML)
-
SciMLSensitivity.jl329A component of the DiffEq ecosystem for enabling sensitivity analysis for scientific machine learning (SciML). Optimize-then-discretize, discretize-then-optimize, adjoint methods, and more for ODEs, SDEs, DDEs, DAEs, etc.
-
SciMLBenchmarks.jl318Scientific machine learning (SciML) benchmarks, AI for science, and (differential) equation solvers. Covers Julia, Python (PyTorch, Jax), MATLAB, R
-
DiffEqBase.jl309The lightweight Base library for shared types and functionality for defining differential equation and scientific machine learning (SciML) problems
-
DiffEqOperators.jl285Linear operators for discretizations of differential equations and scientific machine learning (SciML)
-
DiffEqGPU.jl283GPU-acceleration routines for DifferentialEquations.jl and the broader SciML scientific machine learning ecosystem
-
DiffEqDocs.jl270Documentation for the DiffEq differential equations and scientific machine learning (SciML) ecosystem
-
NeuralOperators.jl262DeepONets, (Fourier) Neural Operators, Physics-Informed Neural Operators, and more in Julia
-
StochasticDiffEq.jl248Solvers for stochastic differential equations which connect with the scientific machine learning (SciML) ecosystem
-
LinearSolve.jl244LinearSolve.jl: High-Performance Unified Interface for Linear Solvers in Julia. Easily switch between factorization and Krylov methods, add preconditioners, and all in one interface.
-
NonlinearSolve.jl227High-performance and differentiation-enabled nonlinear solvers (Newton methods), bracketed rootfinding (bisection, Falsi), with sparsity and Newton-Krylov support.
-
Integrals.jl225A common interface for quadrature and numerical integration for the SciML scientific machine learning organization
-
DataInterpolations.jl213A library of data interpolation and smoothing functions
-
RecursiveArrayTools.jl212Tools for easily handling objects like arrays of arrays and deeper nestings in scientific machine learning (SciML) and other applications
-
Sundials.jl208Julia interface to Sundials, including a nonlinear solver (KINSOL), ODE's (CVODE and ARKODE), and DAE's (IDA) in a SciML scientific machine learning enabled manner
-
ReservoirComputing.jl206Reservoir computing utilities for scientific machine learning (SciML)
-
MethodOfLines.jl157Automatic Finite Difference PDE solving with Julia SciML
-
JumpProcesses.jl139Build and simulate jump equations like Gillespie simulations and jump diffusions with constant and state-dependent rates and mix with differential equations and scientific machine learning (SciML)
-
DiffEqJump.jl139Build and simulate jump equations like Gillespie simulations and jump diffusions with constant and state-dependent rates and mix with differential equations and scientific machine learning (SciML)
-
SciMLBase.jl130The Base interface of the SciML ecosystem
-
NBodySimulator.jl128A differentiable simulator for scientific machine learning (SciML) with N-body problems, including astrophysical and molecular dynamics
-
DiffEqBayes.jl121Extension functionality which uses Stan.jl, DynamicHMC.jl, and Turing.jl to estimate the parameters to differential equations and perform Bayesian probabilistic scientific machine learning
-
LabelledArrays.jl120Arrays which also have a label for each element for easy scientific machine learning (SciML)
-
SymbolicNumericIntegration.jl116SymbolicNumericIntegration.jl: Symbolic-Numerics for Solving Integrals
-
PolyChaos.jl116A Julia package to construct orthogonal polynomials, their quadrature rules, and use it with polynomial chaos expansions.
-
ModelingToolkitStandardLibrary.jl112A standard library of components to model the world and beyond
Loading more...