GridapODEs.jl

Time stepping for Gridap
Author gridap
Popularity
29 Stars
Updated Last
2 Years Ago
Started In
March 2020

GridapODEs

Stable Dev Build Status Codecov Coveralls

This package provides time integration tools for Gridap. As an example, the following code solves the heat equation.

using Gridap
using ForwardDiff
using GridapODEs.ODETools
using GridapODEs.TransientFETools

import Gridap:import GridapODEs.TransientFETools: ∂t

θ = 0.5

u(x,t) = (1.0-x[1])*x[1]*(1.0-x[2])*x[2]*t
u(t) = x -> u(x,t)

f(t) = x -> ∂t(u)(x,t)-Δ(u(t))(x) # or ∂t(u)(t)(x)-Δ(u(t))(x)

domain = (0,1,0,1)
partition = (4,4)
model = CartesianDiscreteModel(domain,partition)

order = 2

reffe = ReferenceFE(lagrangian,Float64,order)
V0 = FESpace(
  model,
  reffe,
  conformity=:H1, 
  dirichlet_tags="boundary"
)

U = TransientTrialFESpace(V0,u)

Ω = Triangulation(model)
degree = 2*order
dΩ = Measure(Ω,degree)

a(u,v) = ( (v)(u) )dΩ
b(v,t) = ( v*f(t) )dΩ
m(u,v) = ( v*u )dΩ

res(t,u,ut,v) = a(u,v) + m(ut,v) - b(v,t)
jac(t,u,ut,du,v) = a(du,v)
jac_t(t,u,ut,dut,v) = m(dut,v)

op = TransientFEOperator(res,jac,jac_t,U,V0)

t0 = 0.0
tF = 1.0
dt = 0.1

U0 = U(0.0)
uh0 = interpolate_everywhere(u(0.0),U0)

ls = LUSolver()
odes = ThetaMethod(ls,dt,θ)
solver = TransientFESolver(odes)
sol_t = solve(solver,op,uh0,t0,tF)

for (uh_tn, tn) in sol_t
  # Here we have the solution uh_tn at tn
end

Used By Packages

No packages found.