ProfileLikelihood.jl

Methods for profile likelihood analysis.
Author DanielVandH
Popularity
18 Stars
Updated Last
3 Months Ago
Started In
June 2022

ProfileLikelihood

DOI Dev Stable Build Status Coverage

This package defines the routines required for computing maximum likelihood estimates and profile likelihoods. The optimisation routines are built around the Optimization.jl interface, allowing us to e.g. easily switch between algorithms, between finite differences and automatic differentiation, and it allows for constraints to be defined with ease. We allow for univariate or bivariate profiles.

To install the package, do

using Pkg
Pkg.add("ProfileLikelihood")

Example Usage

Here is an example of how the package can be used. See the documentation for more examples, where we also show how to compute prediction intervals and bivariate profiles and how to apply these methods to differential equations.

We consider the problem

$$y_i = \beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + \beta_3 x_{1i}x_{3i} + \beta_4\beta_5 x_{4i} + \varepsilon_i, \quad \varepsilon_i \sim \mathcal N(0, \sigma^2), \quad i=1,2,\ldots,n,$$

and our aim is to estimate $\boldsymbol\theta = (\sigma, \beta_0, \beta_1, \beta_2, \beta_3, \beta_4, \beta_5)$. Notice that the parameters $\beta_4$ and $\beta_5$ appear only as a product, so there may be identifiability issues with $\beta_4\beta_5$. To start, we generate some data.

using Random, Distributions, StableRNGs
rng = StableRNG(98871)
n = 600
β = [-1.0, 1.0, 0.5, 3.0, 1.0, 1.0]
σ = 0.05
x₁ = rand(rng, Normal(0, 0.2), n)
x₂ = rand(rng, Uniform(-1, 1), n)
x₃ = rand(rng, Normal(0, 1), n)
x₄ = rand(rng, Exponential(1), n)
ε = rand(rng, Normal(0, σ), n)
X = hcat(ones(n), x₁, x₂, x₁ .* x₃, x₄)
βcombined = [β[1], β[2], β[3], β[4], β[5] * β[6]] # so it's a regression problem
y = X * βcombined + ε

The data y is now our noisy data. Since the residuals are normally distributed, our log-likelihood function is

$$\ell(\boldsymbol\theta \mid \boldsymbol y) = -\frac{n}{2}\log(2\pi\sigma^2) - \frac{1}{2\sigma^2}\sum_{i=1}^n \left(y_i - \beta_0 - \beta_1 x_{1i} - \beta_2 x_{2i} - \beta_3 x_{1i}x_{3i} - \beta_4\beta_5 x_{4i}\right)^2.$$

We can now define the log-likelihood function. To allow for automatic differentiation, we use PreallocationTools.DiffCache from PreallocationTools.jl.

using PreallocationTools, LinearAlgebra
sse = DiffCache(zeros(n))
βcache = DiffCache(similar(β, length(β) - 1), 10) # -1 because we combine β[5] and β[6]
data = (y, X, sse, n, βcache)
function loglik(θ, data)
    σ, β₀, β₁, β₂, β₃, β₄, β₅ = θ
    β₄β₅ = β₄ * β₅
    y, X, sse, n, β = data
    _sse = get_tmp(sse, θ)
    _β = get_tmp(β, θ)
    _β .= (β₀, β₁, β₂, β₃, β₄β₅)
    ℓℓ = -0.5n * log(2π * σ^2)
    mul!(_sse, X, _β)
    for (yᵢ, sseᵢ) in zip(y, _sse)
        ℓℓ -= 0.5 * (yᵢ - sseᵢ)^2 / σ^2
    end
    return ℓℓ
end

We can now define the likelihood problem. We constrain $\sigma$ to be positive and leave $\boldsymbol\beta$ unconstrained.

using ProfileLikelihood, Optimization
θ₀ = ones(7) # initial guess 
prob = LikelihoodProblem(loglik, θ₀; data,
    f_kwargs=(adtype=Optimization.AutoForwardDiff(),),
    prob_kwargs=(
        lb=[0.0, -Inf, -Inf, -Inf, -Inf, -Inf, -Inf],
        ub=fill(Inf, 7),
    ),
    syms=[, :β₀, :β₁, :β₂, :β₃, :β₄, :β₅])

Now we can finally compute the maximum likelihood estimates and thus the profile likelihoods. Since we have do not have bounds on all the parameters, we need to provide the parameter bounds for profiling ourselves.

using OptimizationNLopt
sol = mle(prob, (NLopt.LN_NELDERMEAD(), NLopt.LD_LBFGS())) # can provide multiple algorithms to run one after the other
prof_lb = [1e-12, -5.0, -5.0, -5.0, -2.0, -5.0, -5.0]
prof_ub = [15.0, 15.0, 15.0, 15.0, 15.0, 15.0, 15.0]
resolutions = [1200, 200, 200, 200, 200, 200, 200] # use many points for σ
param_ranges = construct_profile_ranges(sol, prof_lb, prof_ub, resolutions)
prof = profile(prob, sol; param_ranges, parallel=true)
ProfileLikelihoodSolution. MLE retcode: Success
Confidence intervals:
     95.0% CI for σ: (0.04855786315837859, 0.05437892987325201)
     95.0% CI for β₀: (-1.0018489708905645, -0.9901815711646778)
     95.0% CI for β₁: (0.9851645388761775, 1.0263131430542836)
     95.0% CI for β₂: (0.4881124597719428, 0.5020910392590251)
     95.0% CI for β₃: (2.984798581472374, 3.0285274452115227)
     95.0% CI for β₄: (0.9544410678614798, 0.9845140025474981)
     95.0% CI for β₅: (0.9849142023375428, 1.015141041743288)
using CairoMakie
fig = plot_profiles(prof,
    true_vals=[σ, β...],
    axis_kwargs=(width=200, height=200),
    xlim_tuples=[(0.048, 0.056), (-1.01, -0.985), (0.97, 1.050),
        (0.485, 0.505), (2.97, 3.050), (0.95, 1.05),
        (0.95, 1.05)],
    ncol=4, nrow=2
) # see the ?plot_profiles docstring for more options
resize_to_layout!(fig)
fig

Profile likelihood plots

See that, as expected, the profiles for $\beta_4$ and $\beta_5$ are flat as only the product $\beta_4\beta_5$ is identifiable. We can reparametrise the model in terms of $\beta_4\beta_5$ to see the difference. In particular, we now have $\boldsymbol\theta = (\sigma, \beta_0, \beta_1, \beta_2, \beta_3, \beta_4, \beta_4\beta_5)$.

using StaticArrays 
function repar_loglik(θ, data)
    σ, β₀, β₁, β₂, β₃, β₄, β₄β₅ = θ
    θ′ = @SVector[σ, β₀, β₁, β₂, β₃, β₄, β₄β₅/β₄]
    return loglik(θ′, data)
end
prob = LikelihoodProblem(repar_loglik, θ₀; data,
    f_kwargs=(adtype=Optimization.AutoForwardDiff(),),
    prob_kwargs=(
        lb=[0.0, -Inf, -Inf, -Inf, -Inf, 1e-12, -Inf], # 1e-12 to avoid division by zero
        ub=fill(Inf, 7),
    ),
    syms=[, :β₀, :β₁, :β₂, :β₃, :β₄, :β₄β₅])
sol = mle(prob, (NLopt.LN_NELDERMEAD(), NLopt.LD_LBFGS())) 
prof_lb[6] = 1e-12
param_ranges = construct_profile_ranges(sol, prof_lb, prof_ub, resolutions)
prof = profile(prob, sol; param_ranges, parallel=true)
fig = plot_profiles(prof,
    true_vals=[σ, β...],
    axis_kwargs=(width=200, height=200),
    xlim_tuples=[(0.048, 0.056), (-1.01, -0.985), (0.97, 1.050),
        (0.485, 0.505), (2.97, 3.050), (0.95, 1.05),
        (0.99, 1.01)],
    ncol=4, nrow=2
) 
resize_to_layout!(fig)
fig

Profile likelihood plots

We see that the product $\beta_4\beta_5$ is now identifiable (and $\beta_4$ is still not).