43 Packages since 2013
User Packages
-
MLJSerialization.jl0-
-
MLJNaiveBayesInterface.jl0-
-
MLJTestInterface.jl0-
-
MLJTSVDInterface.jl0A repository containing glue code for making TSVD.jl available to MLJ users
-
FeatureSelection.jl1Repository housing feature selection algorithms for use with the machine learning toolbox MLJ.
-
MLJLIBSVMInterface.jl3An implementation of the MLJ model interface for support vector machines provided by LIBSVM.jl
-
StatisticalTraits.jl3-
-
MLJClusteringInterface.jl4-
-
MLJTestIntegration.jl4Utilities to test implementations of the MLJ model interface and provide integration tests for the MLJ ecosystem
-
MLJBalancing.jl5A package with exported learning networks that combine resampling methods from Imbalance.jl and classification models from MLJ
-
MLJEnsembles.jl6-
-
MLJMultivariateStatsInterface.jl7Repository implementing MLJ interface for MultivariateStats models.
-
MLJParticleSwarmOptimization.jl7-
-
MLJFlow.jl8Connecting MLJ and MLFlow
-
StatisticalMeasuresBase.jl8A Julia package for building production-ready measures (metrics) for statistics and machine learning
-
MLJDecisionTreeInterface.jl9-
-
ScientificTypesBase.jl9Base interface for dispatching on the "scientific" type of data instead of the machine type
-
MLJGLMInterface.jl9MLJ.jl interface for GLM.jl models
-
OpenML.jl10Partial implementation of the OpenML API for Julia
-
MLJIteration.jl10A package for wrapping iterative MLJ models in a control strategy
-
MLJOpenML.jl10-
-
CatBoost.jl11Julia wrapper of the python library CatBoost for boosted decision trees
-
MLJXGBoostInterface.jl11-
-
MLJText.jl11A an MLJ extension for accessing models and tools related to text analysis
-
MLJScikitLearnInterface.jl12MLJ Interface for ScikitLearn.jl
-
TreeRecipe.jl13Plot recipe for plotting (decision) trees
-
CategoricalDistributions.jl13Providing probability distributions and non-negative measures over finite sets, whose elements are labelled.
-
StatisticalMeasures.jl14Measures (metrics) for statistics and machine learning
-
MLJScientificTypes.jl17Implementation of the MLJ scientific type convention
-
IterationControl.jl23A package for controlling iterative algorithms
-
EarlyStopping.jl25Early stopping criteria for loss-generating iterative algorithms
-
NearestNeighborModels.jl27Package providing K-nearest neighbor regressors and classifiers, for use with the MLJ machine learning framework.
-
Imbalance.jl28A Julia toolbox with resampling methods to correct for class imbalance.
-
LearnAPI.jl32A Julia interface for training and applying models in machine learning and statistics
-
MLJModelInterface.jl37Lightweight package to interface with MLJ
-
MLFlowClient.jl46Julia client for MLFlow.
-
MLJTuning.jl67Hyperparameter optimization algorithms for use in the MLJ machine learning framework
-
MLJModels.jl80Home of the MLJ model registry and tools for model queries and mode code loading
-
MLJLinearModels.jl81Generalized Linear Regressions Models (penalized regressions, robust regressions, ...)
-
ScientificTypes.jl96An API for dispatching on the "scientific" type of data instead of the machine type
Loading more...